These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
456 related items for PubMed ID: 25044378
1. One-step, room-temperature synthesis of glutathione-capped iron-oxide nanoparticles and their application in in vivo T1-weighted magnetic resonance imaging. Liu CL, Peng YK, Chou SW, Tseng WH, Tseng YJ, Chen HC, Hsiao JK, Chou PT. Small; 2014 Oct 15; 10(19):3962-9. PubMed ID: 25044378 [Abstract] [Full Text] [Related]
2. Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. Kim BH, Lee N, Kim H, An K, Park YI, Choi Y, Shin K, Lee Y, Kwon SG, Na HB, Park JG, Ahn TY, Kim YW, Moon WK, Choi SH, Hyeon T. J Am Chem Soc; 2011 Aug 17; 133(32):12624-31. PubMed ID: 21744804 [Abstract] [Full Text] [Related]
3. Ultrasmall water-soluble metal-iron oxide nanoparticles as T1-weighted contrast agents for magnetic resonance imaging. Zeng L, Ren W, Zheng J, Cui P, Wu A. Phys Chem Chem Phys; 2012 Feb 28; 14(8):2631-6. PubMed ID: 22273844 [Abstract] [Full Text] [Related]
4. T1-T2 dual-modal MRI of brain gliomas using PEGylated Gd-doped iron oxide nanoparticles. Xiao N, Gu W, Wang H, Deng Y, Shi X, Ye L. J Colloid Interface Sci; 2014 Mar 01; 417():159-65. PubMed ID: 24407672 [Abstract] [Full Text] [Related]
5. Biomineralized iron oxide-polydopamine hybrid nanodots for contrast-enhanced T1-weighted magnetic resonance imaging and photothermal tumor ablation. Wang Z, Wang Y, Wang Y, Wei C, Deng Y, Chen H, Shen J, Ke H. J Mater Chem B; 2021 Feb 25; 9(7):1781-1786. PubMed ID: 33594402 [Abstract] [Full Text] [Related]
6. Toxicity of L-DOPA coated iron oxide nanoparticles in intraperitoneal delivery setting - preliminary preclinical study. Comănescu MV, Mocanu MA, Anghelache L, Marinescu B, Dumitrache F, Bădoi AD, Manda G. Rom J Morphol Embryol; 2015 Feb 25; 56(2 Suppl):691-6. PubMed ID: 26429160 [Abstract] [Full Text] [Related]
7. Facile synthesis of ultrasmall PEGylated iron oxide nanoparticles for dual-contrast T1- and T2-weighted magnetic resonance imaging. Hu F, Jia Q, Li Y, Gao M. Nanotechnology; 2011 Jun 17; 22(24):245604. PubMed ID: 21508500 [Abstract] [Full Text] [Related]
9. Targeted dual-contrast T1- and T2-weighted magnetic resonance imaging of tumors using multifunctional gadolinium-labeled superparamagnetic iron oxide nanoparticles. Yang H, Zhuang Y, Sun Y, Dai A, Shi X, Wu D, Li F, Hu H, Yang S. Biomaterials; 2011 Jul 17; 32(20):4584-93. PubMed ID: 21458063 [Abstract] [Full Text] [Related]
10. Labeling transplanted mice islet with polyvinylpyrrolidone coated superparamagnetic iron oxide nanoparticles for in vivo detection by magnetic resonance imaging. Huang H, Xie Q, Kang M, Zhang B, Zhang H, Chen J, Zhai C, Yang D, Jiang B, Wu Y. Nanotechnology; 2009 Sep 09; 20(36):365101. PubMed ID: 19687538 [Abstract] [Full Text] [Related]
11. One-pot preparation of hydrophilic manganese oxide nanoparticles as T1 nano-contrast agent for molecular magnetic resonance imaging of renal carcinoma in vitro and in vivo. Li J, Wu C, Hou P, Zhang M, Xu K. Biosens Bioelectron; 2018 Apr 15; 102():1-8. PubMed ID: 29101783 [Abstract] [Full Text] [Related]
12. "Green" functionalization of magnetic nanoparticles via tea polyphenol for magnetic resonance/fluorescent dual-imaging. Jiang W, Lai K, Liu K, Xia R, Gao F, Wu Y, Gu Z. Nanoscale; 2014 Apr 15; 6(3):1305-10. PubMed ID: 24336977 [Abstract] [Full Text] [Related]
13. Diblock-copolymer-mediated self-assembly of protein-stabilized iron oxide nanoparticle clusters for magnetic resonance imaging. Tähkä S, Laiho A, Kostiainen MA. Chemistry; 2014 Mar 03; 20(10):2718-22. PubMed ID: 24523066 [Abstract] [Full Text] [Related]
14. Hot-injection synthesis of iron/iron oxide core/shell nanoparticles for T2 contrast enhancement in magnetic resonance imaging. Herman DA, Ferguson P, Cheong S, Hermans IF, Ruck BJ, Allan KM, Prabakar S, Spencer JL, Lendrum CD, Tilley RD. Chem Commun (Camb); 2011 Aug 28; 47(32):9221-3. PubMed ID: 21761066 [Abstract] [Full Text] [Related]
15. Iron-oxide-based twin nanoplates with strong T2 relaxation shortening for contrast-enhanced magnetic resonance imaging. Wei R, Zhou T, Sun C, Lin H, Yang L, Ren BW, Chen Z, Gao J. Nanoscale; 2018 Oct 04; 10(38):18398-18406. PubMed ID: 30256373 [Abstract] [Full Text] [Related]
16. Antiferromagnetic iron nanocolloids: a new generation in vivo T1 MRI contrast agent. Peng YK, Liu CL, Chen HC, Chou SW, Tseng WH, Tseng YJ, Kang CC, Hsiao JK, Chou PT. J Am Chem Soc; 2013 Dec 11; 135(49):18621-8. PubMed ID: 24256331 [Abstract] [Full Text] [Related]
17. EDTMP ligand-enhanced water interactions endowing iron oxide nanoparticles with dual-modal MRI contrast ability. Hao L, Wang P, Wu Z, Wang Z, Wang Y, Zhu Y, Xu Z, Guo M, Ji J, Zhang P. J Mater Chem B; 2021 Nov 10; 9(43):9055-9066. PubMed ID: 34673872 [Abstract] [Full Text] [Related]
18. One-step synthesis of water-dispersible ultra-small Fe3O4 nanoparticles as contrast agents for T1 and T2 magnetic resonance imaging. Wang G, Zhang X, Skallberg A, Liu Y, Hu Z, Mei X, Uvdal K. Nanoscale; 2014 Mar 07; 6(5):2953-63. PubMed ID: 24480995 [Abstract] [Full Text] [Related]
19. Ultrasmall Ferrite Nanoparticles Synthesized via Dynamic Simultaneous Thermal Decomposition for High-Performance and Multifunctional T1 Magnetic Resonance Imaging Contrast Agent. Zhang H, Li L, Liu XL, Jiao J, Ng CT, Yi JB, Luo YE, Bay BH, Zhao LY, Peng ML, Gu N, Fan HM. ACS Nano; 2017 Apr 25; 11(4):3614-3631. PubMed ID: 28371584 [Abstract] [Full Text] [Related]
20. Synthesis and characterization of Bombesin-superparamagnetic iron oxide nanoparticles as a targeted contrast agent for imaging of breast cancer using MRI. Jafari A, Salouti M, Shayesteh SF, Heidari Z, Rajabi AB, Boustani K, Nahardani A. Nanotechnology; 2015 Feb 20; 26(7):075101. PubMed ID: 25642737 [Abstract] [Full Text] [Related] Page: [Next] [New Search]