These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
327 related items for PubMed ID: 25060390
21. Tyrosine-functionalized CuInS2 quantum dots as a fluorescence probe for the determination of biothiols, histidine and threonine. Liu S, Shi F, Chen L, Su X. Analyst; 2013 Oct 07; 138(19):5819-25. PubMed ID: 23907110 [Abstract] [Full Text] [Related]
22. InP/ZnS quantum dot-based fluorescent probe for directly sensitive and selective detection of horseradish peroxidase. Yang E, Yao J, Wang L, Liu Y, Xiao Q, Huang S. Methods Appl Fluoresc; 2019 Jun 26; 7(3):035008. PubMed ID: 30654340 [Abstract] [Full Text] [Related]
23. Quantum dots as a possible oxygen sensor. Ziółczyk P, Kur-Kowalska K, Przybyt M, Miller E. Spectrochim Acta A Mol Biomol Spectrosc; 2014 May 21; 126():28-35. PubMed ID: 24568848 [Abstract] [Full Text] [Related]
24. Biocompatible and highly luminescent near-infrared CuInS₂/ZnS quantum dots embedded silica beads for cancer cell imaging. Foda MF, Huang L, Shao F, Han HY. ACS Appl Mater Interfaces; 2014 Feb 12; 6(3):2011-7. PubMed ID: 24433116 [Abstract] [Full Text] [Related]
25. Fluorescent probe for detection of Cu2+ using core-shell CdTe/ZnS quantum dots. Bian W, Wang F, Zhang H, Zhang L, Wang L, Shuang S. Luminescence; 2015 Nov 12; 30(7):1064-70. PubMed ID: 25703392 [Abstract] [Full Text] [Related]
26. 3-Aminophenylboronic acid-functionalized CuInS2 quantum dots as a near-infrared fluorescence probe for the detection of dicyandiamide. Liu S, Pang S, Huang H, Su X. Analyst; 2014 Nov 21; 139(22):5852-7. PubMed ID: 25221790 [Abstract] [Full Text] [Related]
27. Molecular spectroscopic studies on the interactions of rhein and emodin with thioglycolic acid-capped core/shell CdTe/CdS quantum dots and their analytical applications. Li D, Liu S, Shen Y, Yang J, He Y. Luminescence; 2015 Feb 21; 30(1):60-6. PubMed ID: 24850622 [Abstract] [Full Text] [Related]
28. Sodium alginate passivated CuInS2/ZnS QDs encapsulated in the mesoporous channels of amine modified SBA 15 with excellent photostability and biocompatibility. Jose Varghese R, Parani S, Remya VR, Maluleke R, Thomas S, Oluwafemi OS. Int J Biol Macromol; 2020 Oct 15; 161():1470-1476. PubMed ID: 32745549 [Abstract] [Full Text] [Related]
29. In vitro and in vivo immunotoxicity of PEGylated Cd-free CuInS2/ZnS quantum dots. Chen T, Li L, Lin X, Yang Z, Zou W, Chen Y, Xu J, Liu D, Wang X, Lin G. Nanotoxicology; 2020 Apr 15; 14(3):372-387. PubMed ID: 31909648 [Abstract] [Full Text] [Related]
30. Selective detection of parathion-methyl based on near-infrared CuInS2 quantum dots. Yan X, Li H, Yan Y, Su X. Food Chem; 2015 Apr 15; 173():179-84. PubMed ID: 25466010 [Abstract] [Full Text] [Related]
31. Comprehensive study of interaction between biocompatible PEG-InP/ZnS QDs and bovine serum albumin. Sannaikar MS, Inamdar LS, Pujar GH, Wari MN, Balasinor NH, Inamdar SR. Luminescence; 2018 May 15; 33(3):495-504. PubMed ID: 29282888 [Abstract] [Full Text] [Related]
32. Facile synthesis of N-acetyl-L-cysteine capped ZnS quantum dots as an eco-friendly fluorescence sensor for Hg2+. Duan J, Jiang X, Ni S, Yang M, Zhan J. Talanta; 2011 Sep 30; 85(4):1738-43. PubMed ID: 21872012 [Abstract] [Full Text] [Related]
33. Colloidal synthesis of tunably luminescent AgInS-based/ZnS core/shell quantum dots as biocompatible nano-probe for high-contrast fluorescence bioimaging. Soheyli E, Ghaemi B, Sahraei R, Sabzevari Z, Kharrazi S, Amani A. Mater Sci Eng C Mater Biol Appl; 2020 Jun 30; 111():110807. PubMed ID: 32279757 [Abstract] [Full Text] [Related]
34. Near-infrared fluorescence probe for the determination of acid phosphatase and imaging of prostate cancer cells. Lin Z, Liu Z, Zhang H, Su X. Analyst; 2015 Mar 07; 140(5):1629-36. PubMed ID: 25632410 [Abstract] [Full Text] [Related]
35. Characterization of the interaction of FTO protein with thioglycolic acid capped CdTe quantum dots and its analytical application. Ge B, Li Z, Yang L, Wang R, Chang J. Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar 07; 149():667-73. PubMed ID: 25985132 [Abstract] [Full Text] [Related]
36. Preparation of ZnS:Ni/ZnS quantum dots with core/shell structure and application for detecting cefoperazone-sulbactam. Qu J, Zhu Z, Wu C, Zhang L, Qu J. Spectrochim Acta A Mol Biomol Spectrosc; 2014 Mar 07; 121():350-4. PubMed ID: 24275195 [Abstract] [Full Text] [Related]
37. Low-cost and gram-scale synthesis of water-soluble Cu-In-S/ZnS core/shell quantum dots in an electric pressure cooker. Chen Y, Li S, Huang L, Pan D. Nanoscale; 2014 Mar 07; 6(3):1295-8. PubMed ID: 24337019 [Abstract] [Full Text] [Related]
38. Facile synthesis and characterization of water soluble ZnSe/ZnS quantum dots for cellar imaging. Shu C, Huang B, Chen X, Wang Y, Li X, Ding L, Zhong W. Spectrochim Acta A Mol Biomol Spectrosc; 2013 Mar 07; 104():143-9. PubMed ID: 23266687 [Abstract] [Full Text] [Related]
39. FRET probe for selective and sensitive detection of vitamin A by cadmium free quantum dots (ZnS). Safari S, Amiri A, Badiei A. Spectrochim Acta A Mol Biomol Spectrosc; 2020 Apr 15; 231():118062. PubMed ID: 32006912 [Abstract] [Full Text] [Related]
40. Systematical investigation of in vitro interaction of InP/ZnS quantum dots with human serum albumin by multispectroscopic approach. Huang S, Qiu H, Liu Y, Huang C, Sheng J, Cui J, Su W, Xiao Q. Colloids Surf B Biointerfaces; 2016 Dec 01; 148():165-172. PubMed ID: 27595891 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]