These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


239 related items for PubMed ID: 25063510

  • 1. The role of carbonyl reducing enzymes in oxcarbazepine in vitro metabolism in man.
    Malátková P, Havlíková L, Wsól V.
    Chem Biol Interact; 2014 Sep 05; 220():241-7. PubMed ID: 25063510
    [Abstract] [Full Text] [Related]

  • 2. Carbonyl reduction of warfarin: Identification and characterization of human warfarin reductases.
    Malátková P, Sokolová S, Chocholoušová Havlíková L, Wsól V.
    Biochem Pharmacol; 2016 Jun 01; 109():83-90. PubMed ID: 27055738
    [Abstract] [Full Text] [Related]

  • 3. In vitro metabolism of fenofibric acid by carbonyl reducing enzymes.
    Malátková P, Kanavi M, Nobilis M, Wsól V.
    Chem Biol Interact; 2016 Oct 25; 258():153-8. PubMed ID: 27599626
    [Abstract] [Full Text] [Related]

  • 4. Reductive metabolism of tiaprofenic acid by the human liver and recombinant carbonyl reducing enzymes.
    Malátková P, Skarka A, Musilová K, Wsól V.
    Chem Biol Interact; 2017 Oct 01; 276():121-126. PubMed ID: 28322780
    [Abstract] [Full Text] [Related]

  • 5. Role of carbonyl reducing enzymes in the phase I biotransformation of the non-steroidal anti-inflammatory drug nabumetone in vitro.
    Skarydova L, Nobilis M, Wsól V.
    Xenobiotica; 2013 Apr 01; 43(4):346-54. PubMed ID: 23020786
    [Abstract] [Full Text] [Related]

  • 6. Deeper insight into the reducing biotransformation of bupropion in the human liver.
    Skarydova L, Tomanova R, Havlikova L, Stambergova H, Solich P, Wsol V.
    Drug Metab Pharmacokinet; 2014 Apr 01; 29(2):177-84. PubMed ID: 24088726
    [Abstract] [Full Text] [Related]

  • 7. Enzymology of a carbonyl reduction clearance pathway for the HIV integrase inhibitor, S-1360: role of human liver cytosolic aldo-keto reductases.
    Rosemond MJ, St John-Williams L, Yamaguchi T, Fujishita T, Walsh JS.
    Chem Biol Interact; 2004 Mar 15; 147(2):129-39. PubMed ID: 15013815
    [Abstract] [Full Text] [Related]

  • 8. Carbonyl reduction of naltrexone and dolasetron by oxidoreductases isolated from human liver cytosol.
    Breyer-Pfaff U, Nill K.
    J Pharm Pharmacol; 2004 Dec 15; 56(12):1601-6. PubMed ID: 15563768
    [Abstract] [Full Text] [Related]

  • 9. In vitro metabolism and identification of human enzymes involved in the metabolism of methylnaltrexone.
    Tong Z, Chandrasekaran A, Li H, Rotshteyn Y, Erve JC, Demaio W, Talaat R, Hultin T, Scatina J.
    Drug Metab Dispos; 2010 May 15; 38(5):801-7. PubMed ID: 20173089
    [Abstract] [Full Text] [Related]

  • 10. Carbonyl reduction of mequindox by chicken and porcine cytosol and cloned carbonyl reductase 1.
    Tang X, Mu P, Wu J, Jiang J, Zhang C, Zheng M, Deng Y.
    Drug Metab Dispos; 2012 Apr 15; 40(4):788-95. PubMed ID: 22266778
    [Abstract] [Full Text] [Related]

  • 11. Aldo-keto reductases (AKR) from the AKR1C subfamily catalyze the carbonyl reduction of the novel anticancer drug oracin in man.
    Wsol V, Szotakova B, Martin HJ, Maser E.
    Toxicology; 2007 Sep 05; 238(2-3):111-8. PubMed ID: 17618725
    [Abstract] [Full Text] [Related]

  • 12. Carbonyl reductase 1 is a predominant doxorubicin reductase in the human liver.
    Kassner N, Huse K, Martin HJ, Gödtel-Armbrust U, Metzger A, Meineke I, Brockmöller J, Klein K, Zanger UM, Maser E, Wojnowski L.
    Drug Metab Dispos; 2008 Oct 05; 36(10):2113-20. PubMed ID: 18635746
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Carbonyl reduction of bupropion in human liver.
    Molnari JC, Myers AL.
    Xenobiotica; 2012 Jun 05; 42(6):550-61. PubMed ID: 22339467
    [Abstract] [Full Text] [Related]

  • 16. Reductive metabolism of the sanguinarine iminium bond by rat liver preparations.
    Wu Y, Liu ZY, Cao Y, Chen XJ, Zeng JG, Sun ZL.
    Pharmacol Rep; 2013 Jun 05; 65(5):1391-400. PubMed ID: 24399736
    [Abstract] [Full Text] [Related]

  • 17. Reductive metabolism of metyrapone by a quercitrin-sensitive ketone reductase in mouse liver cytosol.
    Maser E, Netter KJ.
    Biochem Pharmacol; 1991 Jun 01; 41(11):1595-9. PubMed ID: 2043149
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Impact of nonsynonymous single nucleotide polymorphisms on in-vitro metabolism of exemestane by hepatic cytosolic reductases.
    Platt A, Xia Z, Liu Y, Chen G, Lazarus P.
    Pharmacogenet Genomics; 2016 Aug 01; 26(8):370-80. PubMed ID: 27111237
    [Abstract] [Full Text] [Related]

  • 20. Carbonyl-reducing enzymes as targets of a drug-immobilised affinity carrier.
    Andrýs R, Zemanová L, Lenčo J, Bílková Z, Wsól V.
    Chem Biol Interact; 2015 Jun 05; 234():169-77. PubMed ID: 25595226
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.