These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
82 related items for PubMed ID: 25065827
1. Changes in TcpA gene frequency explain 2,4,6-trichlorophenol degradation in mesocosms. Sinkkonen A, Ollila S, Romantschuk M. J Environ Sci Health B; 2014; 49(10):756-9. PubMed ID: 25065827 [Abstract] [Full Text] [Related]
2. Layer of organic pine forest soil on top of chlorophenol-contaminated mineral soil enhances contaminant degradation. Sinkkonen A, Kauppi S, Simpanen S, Rantalainen AL, Strömmer R, Romantschuk M. Environ Sci Pollut Res Int; 2013 Mar; 20(3):1737-45. PubMed ID: 22752813 [Abstract] [Full Text] [Related]
3. The microbiota of an unpolluted calcareous soil faces up chlorophenols: Evidences of resistant strains with potential for bioremediation. Caliz J, Vila X, Martí E, Sierra J, Nordgren J, Lindgren PE, Bañeras L, Montserrat G. Chemosphere; 2011 Mar; 83(2):104-16. PubMed ID: 21295817 [Abstract] [Full Text] [Related]
7. Bioremediation of soils co-contaminated with heavy metals and 2,4,5-trichlorophenol by fruiting body of Clitocybe maxima. Liu H, Guo S, Jiao K, Hou J, Xie H, Xu H. J Hazard Mater; 2015 Aug 30; 294():121-7. PubMed ID: 25863026 [Abstract] [Full Text] [Related]
8. Genetic and biochemical characterization of a 2,4,6-trichlorophenol degradation pathway in Ralstonia eutropha JMP134. Louie TM, Webster CM, Xun L. J Bacteriol; 2002 Jul 30; 184(13):3492-500. PubMed ID: 12057943 [Abstract] [Full Text] [Related]
13. Evaluation of various tests for the diagnosis of soil contamination by 2,4,5-trichlorophenol (2,4,5-TCP). Bello D, Trasar-Cepeda C, Leirós MC, Gil-Sotres F. Environ Pollut; 2008 Dec 30; 156(3):611-7. PubMed ID: 18656290 [Abstract] [Full Text] [Related]
14. Development of an oligonucleotide microarray to detect di- and monooxygenase genes for benzene degradation in soil. Iwai S, Kurisu F, Urakawa H, Yagi O, Kasuga I, Furumai H. FEMS Microbiol Lett; 2008 Aug 30; 285(1):111-21. PubMed ID: 18547327 [Abstract] [Full Text] [Related]
15. Structural and catalytic differences between two FADH(2)-dependent monooxygenases: 2,4,5-TCP 4-monooxygenase (TftD) from Burkholderia cepacia AC1100 and 2,4,6-TCP 4-monooxygenase (TcpA) from Cupriavidus necator JMP134. Hayes RP, Webb BN, Subramanian AK, Nissen M, Popchock A, Xun L, Kang C. Int J Mol Sci; 2012 Aug 30; 13(8):9769-9784. PubMed ID: 22949829 [Abstract] [Full Text] [Related]
16. Impact of sources of environmental degradation on microbial community dynamics in non-polluted and metal-polluted soils. Epelde L, Martín-Sánchez I, González-Oreja JA, Anza M, Gómez-Sagasti MT, Garbisu C. Sci Total Environ; 2012 Sep 01; 433():264-72. PubMed ID: 22796724 [Abstract] [Full Text] [Related]
17. Impact of chlorophenols on microbiota of an unpolluted acidic soil: microbial resistance and biodegradation. Caliz J, Vila X, Martí E, Sierra J, Cruañas R, Garau MA, Montserrat G. FEMS Microbiol Ecol; 2011 Oct 01; 78(1):150-64. PubMed ID: 21426365 [Abstract] [Full Text] [Related]
18. Characterization of monooxygenase gene diversity in benzene-amended soils. Iwai S, Kurisu F, Urakawa H, Yagi O, Furumai H. Lett Appl Microbiol; 2010 Feb 01; 50(2):138-45. PubMed ID: 19912525 [Abstract] [Full Text] [Related]
19. Biodegradation kinetics of 2,4,6-trichlorophenol by an acclimated mixed microbial culture under aerobic conditions. Snyder CJ, Asghar M, Scharer JM, Legge RL. Biodegradation; 2006 Dec 01; 17(6):535-44. PubMed ID: 16489415 [Abstract] [Full Text] [Related]
20. Ortho and para oxydehalogenation of dihalophenols catalyzed by the monooxygenase TcpA and NAD(P)H:FAD reductase Fre. Fang L, Qin H, Shi T, Wu X, Li QX, Hua R. J Hazard Mater; 2020 Apr 15; 388():121787. PubMed ID: 31818658 [Abstract] [Full Text] [Related] Page: [Next] [New Search]