These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions. Zhang Y, Jacob DJ, Horowitz HM, Chen L, Amos HM, Krabbenhoft DP, Slemr F, St Louis VL, Sunderland EM. Proc Natl Acad Sci U S A; 2016 Jan 19; 113(3):526-31. PubMed ID: 26729866 [Abstract] [Full Text] [Related]
7. Preparation of mercury emissions inventory for eastern North America. Walcek C, De Santis S, Gentile T. Environ Pollut; 2003 Jan 19; 123(3):375-81. PubMed ID: 12667765 [Abstract] [Full Text] [Related]
10. Effectiveness of Emission Controls to Reduce the Atmospheric Concentrations of Mercury. Castro MS, Sherwell J. Environ Sci Technol; 2015 Dec 15; 49(24):14000-7. PubMed ID: 26606506 [Abstract] [Full Text] [Related]
11. Eddy covariance flux measurements of gaseous elemental mercury using cavity ring-down spectroscopy. Pierce AM, Moore CW, Wohlfahrt G, Hörtnagl L, Kljun N, Obrist D. Environ Sci Technol; 2015 Feb 03; 49(3):1559-68. PubMed ID: 25608027 [Abstract] [Full Text] [Related]
13. Assessment of modeled mercury dry deposition over the Great Lakes region. Zhang L, Blanchard P, Johnson D, Dastoor A, Ryzhkov A, Lin CJ, Vijayaraghavan K, Gay D, Holsen TM, Huang J, Graydon JA, St Louis VL, Castro MS, Miller EK, Marsik F, Lu J, Poissant L, Pilote M, Zhang KM. Environ Pollut; 2012 Feb 03; 161():272-83. PubMed ID: 21705119 [Abstract] [Full Text] [Related]
14. Trends in mercury wet deposition and mercury air concentrations across the U.S. and Canada. Weiss-Penzias PS, Gay DA, Brigham ME, Parsons MT, Gustin MS, Ter Schure A. Sci Total Environ; 2016 Oct 15; 568():546-556. PubMed ID: 26803218 [Abstract] [Full Text] [Related]
15. Global mercury emissions from combustion in light of international fuel trading. Chen Y, Wang R, Shen H, Li W, Chen H, Huang Y, Zhang Y, Chen Y, Su S, Lin N, Liu J, Li B, Wang X, Liu W, Coveney RM, Tao S. Environ Sci Technol; 2014 Oct 15; 48(3):1727-35. PubMed ID: 24433051 [Abstract] [Full Text] [Related]
16. A Modeling Comparison of Mercury Deposition from Current Anthropogenic Mercury Emission Inventories. Simone FD, Gencarelli CN, Hedgecock IM, Pirrone N. Environ Sci Technol; 2016 May 17; 50(10):5154-62. PubMed ID: 27120197 [Abstract] [Full Text] [Related]
17. Patterns and source analysis for atmospheric mercury at Auchencorth Moss, Scotland. Kentisbeer J, Leeson SR, Malcolm HM, Leith ID, Braban CF, Cape JN. Environ Sci Process Impacts; 2014 May 17; 16(5):1112-23. PubMed ID: 24690922 [Abstract] [Full Text] [Related]
18. Two decades of changing anthropogenic mercury emissions in Australia: inventory development, trends, and atmospheric implications. MacFarlane S, Fisher JA, Horowitz HM, Shah V. Environ Sci Process Impacts; 2022 Sep 21; 24(9):1474-1493. PubMed ID: 35603632 [Abstract] [Full Text] [Related]
19. Atmospheric mercury and its deposition during the phasing out of an amalgam electrolysis plant: temporal, seasonal, and spatial patterns. Navrátil T, Rohovec J, Shanley J, Matoušková Š, Nováková T, Šmejkalová AH, Prokeš R. Environ Sci Pollut Res Int; 2023 Dec 21; 30(59):123586-123602. PubMed ID: 37989951 [Abstract] [Full Text] [Related]
20. Mercury emissions to the atmosphere from anthropogenic sources in Europe in 2000 and their scenarios until 2020. Pacyna EG, Pacyna JM, Fudala J, Strzelecka-Jastrzab E, Hlawiczka S, Panasiuk D. Sci Total Environ; 2006 Oct 15; 370(1):147-56. PubMed ID: 16887169 [Abstract] [Full Text] [Related] Page: [Next] [New Search]