These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
177 related items for PubMed ID: 25072525
1. Modulating short wavelength fluorescence with long wavelength light. Copley G, Gillmore JG, Crisman J, Kodis G, Gray CL, Cherry BR, Sherman BD, Liddell PA, Paquette MM, Kelbauskas L, Frank NL, Moore AL, Moore TA, Gust D. J Am Chem Soc; 2014 Aug 27; 136(34):11994-2003. PubMed ID: 25072525 [Abstract] [Full Text] [Related]
2. Computational study of the mechanism of the photochemical and thermal ring-opening/closure reactions and solvent dependence in spirooxazines. Castro PJ, Gómez I, Cossi M, Reguero M. J Phys Chem A; 2012 Aug 09; 116(31):8148-58. PubMed ID: 22708964 [Abstract] [Full Text] [Related]
3. Excited-state properties of a photochromic spirooxazine: double pathways for both fluorescence emission and camphorquinone-sensitized reaction. di Nunzio MR, Romani A, Favaro G. J Phys Chem A; 2009 Aug 27; 113(34):9424-33. PubMed ID: 19655808 [Abstract] [Full Text] [Related]
4. Photochromic spirooxazines functionalized with oligomers: investigation of core-oligomer interactions and photomerocyanine isomer interconversion using NMR spectroscopy and DFT. Yee LH, Hanley T, Evans RA, Davis TP, Ball GE. J Org Chem; 2010 May 07; 75(9):2851-60. PubMed ID: 20384286 [Abstract] [Full Text] [Related]
5. Photoswitchable fluorescent dyads incorporating BODIPY and [1,3]oxazine components. Deniz E, Ray S, Tomasulo M, Impellizzeri S, Sortino S, Raymo FM. J Phys Chem A; 2010 Nov 04; 114(43):11567-75. PubMed ID: 20939622 [Abstract] [Full Text] [Related]
6. Spectral properties of spirooxazine photochromes: TD-DFT insights. Perrier A, Maurel F, Perpète EA, Wathelet V, Jacquemin D. J Phys Chem A; 2009 Nov 19; 113(46):13004-12. PubMed ID: 19791756 [Abstract] [Full Text] [Related]
7. Fluorescence patterning in films of a photoswitchable BODIPY-spiropyran dyad. Deniz E, Tomasulo M, Defazio RA, Watson BD, Raymo FM. Phys Chem Chem Phys; 2010 Oct 07; 12(37):11630-4. PubMed ID: 20714479 [Abstract] [Full Text] [Related]
8. Photoswitchable DNA-binding properties of a photochromic spirooxazine derivative. Ihmels H, Mattay J, May F, Thomas L. Org Biomol Chem; 2013 Aug 21; 11(31):5184-8. PubMed ID: 23824474 [Abstract] [Full Text] [Related]
9. Spiropyrans as molecular optical switches. Seefeldt B, Kasper R, Beining M, Mattay J, Arden-Jacob J, Kemnitzer N, Drexhage KH, Heilemann M, Sauer M. Photochem Photobiol Sci; 2010 Feb 21; 9(2):213-20. PubMed ID: 20126797 [Abstract] [Full Text] [Related]
10. Switching properties of fluorescent photochromic poly(methyl methacrylate) with spironaphthoxazine and D-π-A type pyran-based fluorescent dye. Lee EM, Gwon SY, Son YA, Kim SH. Spectrochim Acta A Mol Biomol Spectrosc; 2012 Feb 21; 86():600-4. PubMed ID: 22133701 [Abstract] [Full Text] [Related]
11. Rational design, synthesis, and characterization of highly fluorescent optical switches for high-contrast optical lock-in detection (OLID) imaging microscopy in living cells. Petchprayoon C, Yan Y, Mao S, Marriott G. Bioorg Med Chem; 2011 Feb 01; 19(3):1030-40. PubMed ID: 20674372 [Abstract] [Full Text] [Related]
12. Temperature-modulated quenching and photoregulated optical switching of poly(N-isopropylacrylamide)/spironaphthoxazine/Rhodamine B hybrid in water. Lee EM, Gwon SY, Son YA, Kim SH. Spectrochim Acta A Mol Biomol Spectrosc; 2012 Aug 01; 94():308-11. PubMed ID: 22522303 [Abstract] [Full Text] [Related]
13. Advances in Spiropyrans/Spirooxazines and Applications Based on Fluorescence Resonance Energy Transfer (FRET) with Fluorescent Materials. Xia H, Xie K, Zou G. Molecules; 2017 Dec 18; 22(12):. PubMed ID: 29258220 [Abstract] [Full Text] [Related]
14. Photoswitchable fluorescent diheteroarylethenes: substituent effects on photochromic and solvatochromic properties. Gillanders F, Giordano L, Díaz SA, Jovin TM, Jares-Erijman EA. Photochem Photobiol Sci; 2014 Mar 18; 13(3):603-12. PubMed ID: 24496436 [Abstract] [Full Text] [Related]
15. Photochromism of a spirooxazine in the single crystalline phase. Patel DG, Benedict JB, Kopelman RA, Frank NL. Chem Commun (Camb); 2005 May 07; (17):2208-10. PubMed ID: 15856098 [Abstract] [Full Text] [Related]
16. Reversible optical control of cyanine fluorescence in fixed and living cells: optical lock-in detection immunofluorescence imaging microscopy. Yan Y, Petchprayoon C, Mao S, Marriott G. Philos Trans R Soc Lond B Biol Sci; 2013 Feb 05; 368(1611):20120031. PubMed ID: 23267183 [Abstract] [Full Text] [Related]
17. Implementing conventional logic unconventionally: photochromic molecular populations as registers and logic gates. Chaplin JC, Russell NA, Krasnogor N. Biosystems; 2012 Jul 05; 109(1):35-51. PubMed ID: 22240019 [Abstract] [Full Text] [Related]
18. Plasmonic activation of a fluorescent carbazole-oxazine switch. Garcia-Amorós J, Swaminathan S, Sortino S, Raymo FM. Chemistry; 2014 Aug 11; 20(33):10276-84. PubMed ID: 25056267 [Abstract] [Full Text] [Related]
19. Fast and stable photochromic oxazines for fluorescence switching. Deniz E, Tomasulo M, Cusido J, Sortino S, Raymo FM. Langmuir; 2011 Oct 04; 27(19):11773-83. PubMed ID: 21591642 [Abstract] [Full Text] [Related]
20. High-contrast fluorescence imaging in fixed and living cells using optimized optical switches. Wu L, Dai Y, Jiang X, Petchprayoon C, Lee JE, Jiang T, Yan Y, Marriott G. PLoS One; 2013 Oct 04; 8(6):e64738. PubMed ID: 23755140 [Abstract] [Full Text] [Related] Page: [Next] [New Search]