These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
271 related items for PubMed ID: 25072643
1. Simple and fast method for iron determination in white and red wines using dispersive liquid-liquid microextraction and ultraviolet-visible spectrophotometry. Maciel JV, Soares BM, Mandlate JS, Picoloto RS, Bizzi CA, Flores EM, Duarte FA. J Agric Food Chem; 2014 Aug 20; 62(33):8340-5. PubMed ID: 25072643 [Abstract] [Full Text] [Related]
2. Determination of total iron in water and foods by dispersive liquid-liquid microextraction coupled with microvolume UV-vis spectrophotometry. Peng B, Shen Y, Gao Z, Zhou M, Ma Y, Zhao S. Food Chem; 2015 Jun 01; 176():288-93. PubMed ID: 25624235 [Abstract] [Full Text] [Related]
6. Generation of volatile copper species after in situ ionic liquid formation dispersive liquid-liquid microextraction prior to atomic absorption spectrometric detection. Stanisz E, Zgoła-Grześkowiak A, Matusiewicz H. Talanta; 2014 Nov 01; 129():254-62. PubMed ID: 25127592 [Abstract] [Full Text] [Related]
8. Development of a new green non-dispersive ionic liquid microextraction method in a narrow glass column for determination of cadmium prior to couple with graphite furnace atomic absorption spectrometry. Naeemullah, Kazi TG, Tuzen M, Shah F, Afridi HI, Citak D. Anal Chim Acta; 2014 Feb 17; 812():59-64. PubMed ID: 24491765 [Abstract] [Full Text] [Related]
9. Application of response surface methodology for determination of methyl red in water samples by spectrophotometry method. Khodadoust S, Ghaedi M. Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec 10; 133():87-92. PubMed ID: 24929320 [Abstract] [Full Text] [Related]
11. Dispersive liquid-liquid microextraction followed by high-performance liquid chromatography-ultraviolet detection to determination of opium alkaloids in human plasma. Ahmadi-Jouibari T, Fattahi N, Shamsipur M, Pirsaheb M. J Pharm Biomed Anal; 2013 Nov 10; 85():14-20. PubMed ID: 23872211 [Abstract] [Full Text] [Related]
15. Microwave-assisted of dispersive liquid-liquid microextraction and spectrophotometric determination of uranium after optimization based on Box-Behnken design and chemometrics methods. Niazi A, Khorshidi N, Ghaemmaghami P. Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan 25; 135():69-75. PubMed ID: 25062051 [Abstract] [Full Text] [Related]
17. Dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometry: ultra trace determination of cadmium in water samples. Zeini Jahromi E, Bidari A, Assadi Y, Milani Hosseini MR, Jamali MR. Anal Chim Acta; 2007 Mar 07; 585(2):305-11. PubMed ID: 17386679 [Abstract] [Full Text] [Related]
18. Spectrophotometric determination of iron species using a combination of artificial neural networks and dispersive liquid-liquid microextraction based on solidification of floating organic drop. Moghadam MR, Shabani AM, Dadfarnia S. J Hazard Mater; 2011 Dec 15; 197():176-82. PubMed ID: 21999983 [Abstract] [Full Text] [Related]
19. Determination of Ultra-Trace Cobalt in Water Samples Using Dispersive Liquid-Liquid Microextraction Followed by Graphite Furnace Atomic Absorption Spectrometry. Han Q, Liu Y, Huo Y, Li D, Yang X. Molecules; 2022 Apr 22; 27(9):. PubMed ID: 35566045 [Abstract] [Full Text] [Related]
20. Iron species determination by task-specific ionic liquid-based in situ solvent formation dispersive liquid-liquid microextraction combined with flame atomic absorption spectrometry. Sadeghi S, Ashoori V. J Sci Food Agric; 2017 Oct 22; 97(13):4635-4642. PubMed ID: 28369892 [Abstract] [Full Text] [Related] Page: [Next] [New Search]