These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
304 related items for PubMed ID: 25072767
1. Reducing the mobility of arsenic in brownfield soil using stabilised zero-valent iron nanoparticles. Gil-Díaz M, Alonso J, Rodríguez-Valdés E, Pinilla P, Lobo MC. J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(12):1361-9. PubMed ID: 25072767 [Abstract] [Full Text] [Related]
2. A nanoremediation strategy for the recovery of an As-polluted soil. Gil-Díaz M, Diez-Pascual S, González A, Alonso J, Rodríguez-Valdés E, Gallego JR, Lobo MC. Chemosphere; 2016 Apr; 149():137-45. PubMed ID: 26855217 [Abstract] [Full Text] [Related]
3. Zero valent iron and goethite nanoparticles as new promising remediation techniques for As-polluted soils. Baragaño D, Alonso J, Gallego JR, Lobo MC, Gil-Díaz M. Chemosphere; 2020 Jan; 238():124624. PubMed ID: 31472353 [Abstract] [Full Text] [Related]
4. Comparing different commercial zero valent iron nanoparticles to immobilize As and Hg in brownfield soil. Gil-Díaz M, Alonso J, Rodríguez-Valdés E, Gallego JR, Lobo MC. Sci Total Environ; 2017 Apr 15; 584-585():1324-1332. PubMed ID: 28190571 [Abstract] [Full Text] [Related]
5. Evaluation of the stability of a nanoremediation strategy using barley plants. Gil-Díaz M, González A, Alonso J, Lobo MC. J Environ Manage; 2016 Jan 01; 165():150-158. PubMed ID: 26431642 [Abstract] [Full Text] [Related]
6. Immobilization and phytotoxicity of chromium in contaminated soil remediated by CMC-stabilized nZVI. Wang Y, Fang Z, Kang Y, Tsang EP. J Hazard Mater; 2014 Jun 30; 275():230-7. PubMed ID: 24880637 [Abstract] [Full Text] [Related]
7. Evaluating the mobility of polymer-stabilised zero-valent iron nanoparticles and their potential to co-transport contaminants in intact soil cores. Chekli L, Brunetti G, Marzouk ER, Maoz-Shen A, Smith E, Naidu R, Shon HK, Lombi E, Donner E. Environ Pollut; 2016 Sep 30; 216():636-645. PubMed ID: 27357483 [Abstract] [Full Text] [Related]
8. Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil. Su H, Fang Z, Tsang PE, Fang J, Zhao D. Environ Pollut; 2016 Jul 30; 214():94-100. PubMed ID: 27064615 [Abstract] [Full Text] [Related]
9. Reducing As availability in calcareous soils using nanoscale zero valent iron. Azari P, Bostani AA. Environ Sci Pollut Res Int; 2017 Sep 30; 24(25):20438-20445. PubMed ID: 28707247 [Abstract] [Full Text] [Related]
10. In situ remediation of hexavalent chromium contaminated soil by CMC-stabilized nanoscale zero-valent iron composited with biochar. Zhang R, Zhang N, Fang Z. Water Sci Technol; 2018 Mar 30; 77(5-6):1622-1631. PubMed ID: 29595164 [Abstract] [Full Text] [Related]
11. Performance and toxicity assessment of nanoscale zero valent iron particles in the remediation of contaminated soil: A review. Xue W, Huang D, Zeng G, Wan J, Cheng M, Zhang C, Hu C, Li J. Chemosphere; 2018 Nov 30; 210():1145-1156. PubMed ID: 30208540 [Abstract] [Full Text] [Related]
12. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. El-Temsah YS, Joner EJ. Environ Toxicol; 2012 Jan 30; 27(1):42-9. PubMed ID: 20549639 [Abstract] [Full Text] [Related]
13. Zero-Valent Iron Nanoparticles for Soil and Groundwater Remediation. Galdames A, Ruiz-Rubio L, Orueta M, Sánchez-Arzalluz M, Vilas-Vilela JL. Int J Environ Res Public Health; 2020 Aug 11; 17(16):. PubMed ID: 32796749 [Abstract] [Full Text] [Related]
14. Ageing decreases the phytotoxicity of zero-valent iron nanoparticles in soil cultivated with Oryza sativa. Wang J, Fang Z, Cheng W, Tsang PE, Zhao D. Ecotoxicology; 2016 Aug 11; 25(6):1202-10. PubMed ID: 27207497 [Abstract] [Full Text] [Related]
15. Use of Nanoscale Zero-Valent Iron for Remediation of Clayey Soil Contaminated with Hexavalent Chromium: Batch and Column Tests. Reginatto C, Cecchin I, Heineck KS, Reddy KR, Thomé A. Int J Environ Res Public Health; 2020 Feb 05; 17(3):. PubMed ID: 32033384 [Abstract] [Full Text] [Related]
16. Effect of nano zero-valent iron application on As, Cd, Pb, and Zn availability in the rhizosphere of metal(loid) contaminated soils. Vítková M, Puschenreiter M, Komárek M. Chemosphere; 2018 Jun 05; 200():217-226. PubMed ID: 29486361 [Abstract] [Full Text] [Related]
17. Environmental factors influencing remediation of TNT-contaminated water and soil with nanoscale zero-valent iron particles. Jiamjitrpanich W, Polprasert C, Parkpian P, Delaune RD, Jugsujinda A. J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Jun 05; 45(3):263-74. PubMed ID: 20390867 [Abstract] [Full Text] [Related]
18. Remediation of hexavalent chromium contaminated soil by biochar-supported zero-valent iron nanoparticles. Su H, Fang Z, Tsang PE, Zheng L, Cheng W, Fang J, Zhao D. J Hazard Mater; 2016 Nov 15; 318():533-540. PubMed ID: 27469041 [Abstract] [Full Text] [Related]
19. Residual impact of aged nZVI on heavy metal-polluted soils. Fajardo C, Gil-Díaz M, Costa G, Alonso J, Guerrero AM, Nande M, Lobo MC, Martín M. Sci Total Environ; 2015 Dec 01; 535():79-84. PubMed ID: 25863574 [Abstract] [Full Text] [Related]
20. Immobilisation of metal(loid)s in two contaminated soils using micro and nano zerovalent iron particles: Evaluating the long-term stability. Danila V, Kumpiene J, Kasiuliene A, Vasarevičius S. Chemosphere; 2020 Jun 01; 248():126054. PubMed ID: 32023510 [Abstract] [Full Text] [Related] Page: [Next] [New Search]