These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
202 related items for PubMed ID: 25079995
21. Increases of ferrous iron oxidation activity and arsenic stressed cell growth by overexpression of Cyc2 in Acidithiobacillus ferrooxidans ATCC19859. Liu W, Lin J, Pang X, Mi S, Cui S, Lin J. Biotechnol Appl Biochem; 2013; 60(6):623-8. PubMed ID: 23980744 [Abstract] [Full Text] [Related]
22. Volatilization of mercury by an iron oxidation enzyme system in a highly mercury-resistant Acidithiobacillus ferrooxidans strain MON-1. Sugio T, Fujii M, Takeuchi F, Negishi A, Maeda T, Kamimura K. Biosci Biotechnol Biochem; 2003 Jul; 67(7):1537-44. PubMed ID: 12913298 [Abstract] [Full Text] [Related]
24. Formation and stability of biogenic tooeleite during Fe(II) oxidation by Acidithiobacillus ferrooxidans. Li Q, Zhang M, Yang J, Liu Q, Zhang G, Liao Q, Liu H, Wang Q. Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110755. PubMed ID: 32279796 [Abstract] [Full Text] [Related]
25. Facilitating role of biogenetic schwertmannite in the reduction of Cr(VI) by sulfide and its mechanism. Zhou P, Li Y, Shen Y, Lan Y, Zhou L. J Hazard Mater; 2012 Oct 30; 237-238():194-8. PubMed ID: 22954599 [Abstract] [Full Text] [Related]
26. Effect of ferrous iron loading on dewaterability, heavy metal removal and bacterial community of digested sludge by Acidithiobacillus ferrooxidans. Cai G, Ebrahimi M, Zheng G, Kaksonen AH, Morris C, O'Hara IM, Zhang Z. J Environ Manage; 2021 Oct 01; 295():113114. PubMed ID: 34171779 [Abstract] [Full Text] [Related]
27. Sulfate availability drives divergent evolution of arsenic speciation during microbially mediated reductive transformation of schwertmannite. Burton ED, Johnston SG, Kraal P, Bush RT, Claff S. Environ Sci Technol; 2013 Mar 05; 47(5):2221-9. PubMed ID: 23373718 [Abstract] [Full Text] [Related]
30. Mineral and iron oxidation at low temperatures by pure and mixed cultures of acidophilic microorganisms. Dopson M, Halinen AK, Rahunen N, Ozkaya B, Sahinkaya E, Kaksonen AH, Lindström EB, Puhakka JA. Biotechnol Bioeng; 2007 Aug 01; 97(5):1205-15. PubMed ID: 17187443 [Abstract] [Full Text] [Related]
33. [Mathematical model of Thiobacillus ferrooxidans growth on a medium with ferrous iron]. Petrova TA, Galaktionova NA, Karavaĭko GI, Krylov IuM, Moshniakova SA. Mikrobiologiia; 1979 Aug 01; 48(2):235-9. PubMed ID: 35735 [Abstract] [Full Text] [Related]
35. Insights into the structure and metabolic function of microbes that shape pelagic iron-rich aggregates ("iron snow"). Lu S, Chourey K, Reiche M, Nietzsche S, Shah MB, Neu TR, Hettich RL, Küsel K. Appl Environ Microbiol; 2013 Jul 01; 79(14):4272-81. PubMed ID: 23645202 [Abstract] [Full Text] [Related]
36. Microbial reduction of arsenic-doped schwertmannite by Geobacter sulfurreducens. Cutting RS, Coker VS, Telling ND, Kimber RL, van der Laan G, Pattrick RA, Vaughan DJ, Arenholz E, Lloyd JR. Environ Sci Technol; 2012 Nov 20; 46(22):12591-9. PubMed ID: 23043215 [Abstract] [Full Text] [Related]
38. [Effect of Fe3+ ions on Thiobacillus ferrooxidans oxidation of ferrous oxide at various temperatures]. Kovalenko TV, Karavaĭko GI, Piskunov VP. Mikrobiologiia; 1982 Nov 20; 51(1):156-60. PubMed ID: 7070305 [Abstract] [Full Text] [Related]
39. A novel approach for treating acid mine drainage through forming schwertmannite driven by a mixed culture of Acidiphilium multivorum and Acidithiobacillus ferrooxidans prior to lime neutralization. Jin D, Wang X, Liu L, Liang J, Zhou L. J Hazard Mater; 2020 Dec 05; 400():123108. PubMed ID: 32593016 [Abstract] [Full Text] [Related]