These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
237 related items for PubMed ID: 25086049
1. Structure and substrate specificity of a eukaryotic fucosidase from Fusarium graminearum. Cao H, Walton JD, Brumm P, Phillips GN. J Biol Chem; 2014 Sep 12; 289(37):25624-38. PubMed ID: 25086049 [Abstract] [Full Text] [Related]
2. α-Fucosidases with different substrate specificities from two species of Fusarium. Paper JM, Scott-Craig JS, Cavalier D, Faik A, Wiemels RE, Borrusch MS, Bongers M, Walton JD. Appl Microbiol Biotechnol; 2013 Jun 12; 97(12):5371-80. PubMed ID: 23011349 [Abstract] [Full Text] [Related]
3. Improved Transglycosylation by a Xyloglucan-Active α-l-Fucosidase from Fusarium graminearum. Zeuner B, Vuillemin M, Holck J, Muschiol J, Meyer AS. J Fungi (Basel); 2020 Nov 18; 6(4):. PubMed ID: 33217923 [Abstract] [Full Text] [Related]
4. Characterization of an α-L-fucosidase in marine bacterium Wenyingzhuangia fucanilytica: new evidence on the catalytic sites of GH95 family glycosidases. Shen J, Li J, Zhang Y, Mei X, Xue C, Chang Y. J Sci Food Agric; 2024 Oct 18; 104(13):8240-8247. PubMed ID: 38932571 [Abstract] [Full Text] [Related]
5. Substrate specificity and transfucosylation activity of GH29 α-l-fucosidases for enzymatic production of human milk oligosaccharides. Zeuner B, Muschiol J, Holck J, Lezyk M, Gedde MR, Jers C, Mikkelsen JD, Meyer AS. N Biotechnol; 2018 Mar 25; 41():34-45. PubMed ID: 29221760 [Abstract] [Full Text] [Related]
6. Structural basis of the catalytic reaction mechanism of novel 1,2-alpha-L-fucosidase from Bifidobacterium bifidum. Nagae M, Tsuchiya A, Katayama T, Yamamoto K, Wakatsuki S, Kato R. J Biol Chem; 2007 Jun 22; 282(25):18497-18509. PubMed ID: 17459873 [Abstract] [Full Text] [Related]
7. Identification of an Arabidopsis gene encoding a GH95 alpha1,2-fucosidase active on xyloglucan oligo- and polysaccharides. Léonard R, Pabst M, Bondili JS, Chambat G, Veit C, Strasser R, Altmann F. Phytochemistry; 2008 Jul 22; 69(10):1983-8. PubMed ID: 18495185 [Abstract] [Full Text] [Related]
8. Characterization of five marine family 29 glycoside hydrolases reveals an α-L-fucosidase targeting specifically Fuc(α1,4)GlcNAc. Schultz-Johansen M, Stougaard P, Svensson B, Teze D. Glycobiology; 2022 May 23; 32(6):529-539. PubMed ID: 35137077 [Abstract] [Full Text] [Related]
9. Infant Gut Microbial Metagenome Mining of α-l-Fucosidases with Activity on Fucosylated Human Milk Oligosaccharides and Glycoconjugates. Moya-Gonzálvez EM, Peña-Gil N, Rubio-Del-Campo A, Coll-Marqués JM, Gozalbo-Rovira R, Monedero V, Rodríguez-Díaz J, Yebra MJ. Microbiol Spectr; 2022 Aug 31; 10(4):e0177522. PubMed ID: 35943155 [Abstract] [Full Text] [Related]
10. Structure and function of microbial α-l-fucosidases: a mini review. Wu H, Owen CD, Juge N. Essays Biochem; 2023 Apr 18; 67(3):399-414. PubMed ID: 36805644 [Abstract] [Full Text] [Related]
11. The structure of a glycoside hydrolase 29 family member from a rumen bacterium reveals unique, dual carbohydrate-binding domains. Summers EL, Moon CD, Atua R, Arcus VL. Acta Crystallogr F Struct Biol Commun; 2016 Oct 01; 72(Pt 10):750-761. PubMed ID: 27710940 [Abstract] [Full Text] [Related]
12. Two distinct alpha-L-fucosidases from Bifidobacterium bifidum are essential for the utilization of fucosylated milk oligosaccharides and glycoconjugates. Ashida H, Miyake A, Kiyohara M, Wada J, Yoshida E, Kumagai H, Katayama T, Yamamoto K. Glycobiology; 2009 Sep 01; 19(9):1010-7. PubMed ID: 19520709 [Abstract] [Full Text] [Related]
13. Substrate specificity and transglycosylation capacity of α-L-fucosidases across GH29 assessed by bioinformatics-assisted selection of functional diversity. Perna VN, Barrett K, Meyer AS, Zeuner B. Glycobiology; 2023 Jun 03; 33(5):396-410. PubMed ID: 37014745 [Abstract] [Full Text] [Related]
14. Characterization of a new α-l-fucosidase isolated from Fusarium proliferatum LE1 that is regioselective to α-(1 → 4)-l-fucosidic linkage in the hydrolysis of α-l-fucobiosides. Shvetsova SV, Shabalin KA, Bobrov KS, Ivanen DR, Ustyuzhanina NE, Krylov VB, Nifantiev NE, Naryzhny SN, Zgoda VG, Eneyskaya EV, Kulminskaya AA. Biochimie; 2017 Jan 03; 132():54-65. PubMed ID: 27984201 [Abstract] [Full Text] [Related]
15. Fucoidan-active α-L-fucosidases of the GH29 and GH95 families from a fucoidan degrading cluster of the marine bacterium Wenyingzhuangia fucanilytica. Silchenko AS, Rubtsov NK, Zueva AO, Kusaykin MI, Rasin AB, Ermakova SP. Arch Biochem Biophys; 2022 Oct 15; 728():109373. PubMed ID: 35940339 [Abstract] [Full Text] [Related]
16. Identity and role of the non-conserved acid/base catalytic residue in the GH29 fucosidase from the spider Nephilingis cruentata. Perrella NN, Withers SG, Lopes AR. Glycobiology; 2018 Dec 01; 28(12):925-932. PubMed ID: 30204861 [Abstract] [Full Text] [Related]
17. Degradation pathway of plant complex-type N-glycans: identification and characterization of a key α1,3-fucosidase from glycoside hydrolase family 29. Kato S, Hayashi M, Kitagawa M, Kajiura H, Maeda M, Kimura Y, Igarashi K, Kasahara M, Ishimizu T. Biochem J; 2018 Jan 11; 475(1):305-317. PubMed ID: 29212795 [Abstract] [Full Text] [Related]