These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
345 related items for PubMed ID: 25088750
1. Encompassing receptor flexibility in virtual screening using ensemble docking-based hybrid QSAR: discovery of novel phytochemicals for BACE1 inhibition. Chakraborty S, Ramachandran B, Basu S. Mol Biosyst; 2014 Oct; 10(10):2684-92. PubMed ID: 25088750 [Abstract] [Full Text] [Related]
2. Conformational transition in the substrate binding domain of β-secretase exploited by NMA and its implication in inhibitor recognition: BACE1-myricetin a case study. Chakraborty S, Kumar S, Basu S. Neurochem Int; 2011 Jul; 58(8):914-23. PubMed ID: 21354237 [Abstract] [Full Text] [Related]
7. BACE1 molecular docking and anti-Alzheimer's disease activities of ginsenosides. Choi RJ, Roy A, Jung HJ, Ali MY, Min BS, Park CH, Yokozawa T, Fan TP, Choi JS, Jung HA. J Ethnopharmacol; 2016 Aug 22; 190():219-30. PubMed ID: 27275774 [Abstract] [Full Text] [Related]
8. Tripeptidic BACE1 inhibitors devised by in-silico conformational structure-based design. Hamada Y, Tagad HD, Nishimura Y, Ishiura S, Kiso Y. Bioorg Med Chem Lett; 2012 Jan 15; 22(2):1130-5. PubMed ID: 22178553 [Abstract] [Full Text] [Related]
9. Protein flexibility in ligand docking and virtual screening to protein kinases. Cavasotto CN, Abagyan RA. J Mol Biol; 2004 Mar 12; 337(1):209-25. PubMed ID: 15001363 [Abstract] [Full Text] [Related]
10. Flexibility of the flap in the active site of BACE1 as revealed by crystal structures and molecular dynamics simulations. Xu Y, Li MJ, Greenblatt H, Chen W, Paz A, Dym O, Peleg Y, Chen T, Shen X, He J, Jiang H, Silman I, Sussman JL. Acta Crystallogr D Biol Crystallogr; 2012 Jan 12; 68(Pt 1):13-25. PubMed ID: 22194329 [Abstract] [Full Text] [Related]
11. A PM7 dynamic residue-ligand interactions energy landscape of the BACE1 inhibitory pathway by hydroxyethylamine compounds. Part I: The flap closure process. Gueto-Tettay C, Martinez-Consuegra A, Zuchniarz J, Gueto-Tettay LR, Drosos-Ramírez JC. J Mol Graph Model; 2017 Sep 12; 76():274-288. PubMed ID: 28746905 [Abstract] [Full Text] [Related]
12. Study on the active mechanism of β-secretase inhibitors by molecular simulations. Tian YL, Lv M, Li JJ, Xu T, Zhai HL, Zhang XY. Eur J Pharm Sci; 2015 Aug 30; 76():138-48. PubMed ID: 25965961 [Abstract] [Full Text] [Related]
13. Screening and Elucidation of Selected Natural Compounds for Anti- Alzheimer's Potential Targeting BACE-1 Enzyme: A Case Computational Study. Ahmad SS, Akhtar S, Danish Rizvi SM, Kamal MA, Sayeed U, Khan MKA, Siddiqui MH, Arif JM. Curr Comput Aided Drug Des; 2017 Nov 10; 13(4):311-318. PubMed ID: 28413992 [Abstract] [Full Text] [Related]
14. A comparative molecular dynamics study on BACE1 and BACE2 flap flexibility. Kumalo HM, Soliman ME. J Recept Signal Transduct Res; 2016 Oct 10; 36(5):505-14. PubMed ID: 26804314 [Abstract] [Full Text] [Related]
16. Multi-target screening mines hesperidin as a multi-potent inhibitor: Implication in Alzheimer's disease therapeutics. Chakraborty S, Bandyopadhyay J, Chakraborty S, Basu S. Eur J Med Chem; 2016 Oct 04; 121():810-822. PubMed ID: 27068363 [Abstract] [Full Text] [Related]
17. Flavonoids as BACE1 inhibitors: QSAR modelling, screening and in vitro evaluation. Das S, Majumder T, Sarkar A, Mukherjee P, Basu S. Int J Biol Macromol; 2020 Dec 15; 165(Pt A):1323-1330. PubMed ID: 33010267 [Abstract] [Full Text] [Related]
18. Hybrid approach to sieve out natural compounds against dual targets in Alzheimer's Disease. Das S, Chakraborty S, Basu S. Sci Rep; 2019 Mar 06; 9(1):3714. PubMed ID: 30842555 [Abstract] [Full Text] [Related]