These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


611 related items for PubMed ID: 25089832

  • 41.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 42.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 43.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 44.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 45. Nested sampling for parameter inference in systems biology: application to an exemplar circadian model.
    Aitken S, Akman OE.
    BMC Syst Biol; 2013 Jul 30; 7():72. PubMed ID: 23899119
    [Abstract] [Full Text] [Related]

  • 46.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 47. Likelihood approximation networks (LANs) for fast inference of simulation models in cognitive neuroscience.
    Fengler A, Govindarajan LN, Chen T, Frank MJ.
    Elife; 2021 Apr 06; 10():. PubMed ID: 33821788
    [Abstract] [Full Text] [Related]

  • 48.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 49.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 50.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 51. Bayesian inference using Hamiltonian Monte-Carlo algorithm for nonlinear joint modeling in the context of cancer immunotherapy.
    Kerioui M, Mercier F, Bertrand J, Tardivon C, Bruno R, Guedj J, Desmée S.
    Stat Med; 2020 Dec 30; 39(30):4853-4868. PubMed ID: 33032368
    [Abstract] [Full Text] [Related]

  • 52.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 53. Calibration of stochastic, agent-based neuron growth models with approximate Bayesian computation.
    Duswald T, Breitwieser L, Thorne T, Wohlmuth B, Bauer R.
    J Math Biol; 2024 Oct 08; 89(5):50. PubMed ID: 39379537
    [Abstract] [Full Text] [Related]

  • 54. Generalized Fiducial Inference for Binary Logistic Item Response Models.
    Liu Y, Hannig J.
    Psychometrika; 2016 Jun 08; 81(2):290-324. PubMed ID: 26769340
    [Abstract] [Full Text] [Related]

  • 55.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 56. Bayesian inference of risk ratio of two proportions using a double sampling scheme.
    Rahardja D, Young DM.
    J Biopharm Stat; 2011 May 08; 21(3):393-404. PubMed ID: 21442515
    [Abstract] [Full Text] [Related]

  • 57. Well-tempered MCMC simulations for population pharmacokinetic models.
    Bois FY, Hsieh NH, Gao W, Chiu WA, Reisfeld B.
    J Pharmacokinet Pharmacodyn; 2020 Dec 08; 47(6):543-559. PubMed ID: 32737765
    [Abstract] [Full Text] [Related]

  • 58.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 59.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 60.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 31.