These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


592 related items for PubMed ID: 25090157

  • 1. Directing osteogenesis of stem cells with hydroxyapatite precipitated electrospun eri-tasar silk fibroin nanofibrous scaffold.
    Panda N, Bissoyi A, Pramanik K, Biswas A.
    J Biomater Sci Polym Ed; 2014; 25(13):1440-57. PubMed ID: 25090157
    [Abstract] [Full Text] [Related]

  • 2. Precipitation of hydroxyapatite on electrospun polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds for bone tissue engineering.
    Shanmugavel S, Reddy VJ, Ramakrishna S, Lakshmi BS, Dev VG.
    J Biomater Appl; 2014 Jul; 29(1):46-58. PubMed ID: 24287981
    [Abstract] [Full Text] [Related]

  • 3. Development of novel electrospun nanofibrous scaffold from P. Ricini And A. Mylitta silk fibroin blend with improved surface and biological properties.
    Panda N, Bissoyi A, Pramanik K, Biswas A.
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():521-32. PubMed ID: 25579953
    [Abstract] [Full Text] [Related]

  • 4. Response of human mesenchymal stem cells to intrafibrillar nanohydroxyapatite content and extrafibrillar nanohydroxyapatite in biomimetic chitosan/silk fibroin/nanohydroxyapatite nanofibrous membrane scaffolds.
    Lai GJ, Shalumon KT, Chen JP.
    Int J Nanomedicine; 2015 Mar; 10():567-84. PubMed ID: 25609962
    [Abstract] [Full Text] [Related]

  • 5. An axial distribution of seeding, proliferation, and osteogenic differentiation of MC3T3-E1 cells and rat bone marrow-derived mesenchymal stem cells across a 3D Thai silk fibroin/gelatin/hydroxyapatite scaffold in a perfusion bioreactor.
    Sinlapabodin S, Amornsudthiwat P, Damrongsakkul S, Kanokpanont S.
    Mater Sci Eng C Mater Biol Appl; 2016 Jan 01; 58():960-70. PubMed ID: 26478392
    [Abstract] [Full Text] [Related]

  • 6. Potential of inherent RGD containing silk fibroin-poly (Є-caprolactone) nanofibrous matrix for bone tissue engineering.
    Bhattacharjee P, Kundu B, Naskar D, Kim HW, Bhattacharya D, Maiti TK, Kundu SC.
    Cell Tissue Res; 2016 Feb 01; 363(2):525-40. PubMed ID: 26174955
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Biomineralized poly (l-lactic-co-glycolic acid)-tussah silk fibroin nanofiber fabric with hierarchical architecture as a scaffold for bone tissue engineering.
    Gao Y, Shao W, Qian W, He J, Zhou Y, Qi K, Wang L, Cui S, Wang R.
    Mater Sci Eng C Mater Biol Appl; 2018 Mar 01; 84():195-207. PubMed ID: 29519429
    [Abstract] [Full Text] [Related]

  • 11. Carboxymethyl cellulose enables silk fibroin nanofibrous scaffold with enhanced biomimetic potential for bone tissue engineering application.
    Singh BN, Panda NN, Mund R, Pramanik K.
    Carbohydr Polym; 2016 Oct 20; 151():335-347. PubMed ID: 27474575
    [Abstract] [Full Text] [Related]

  • 12. Non-mulberry silk fibroin grafted poly (Є-caprolactone)/nano hydroxyapatite nanofibrous scaffold for dual growth factor delivery to promote bone regeneration.
    Bhattacharjee P, Naskar D, Maiti TK, Bhattacharya D, Kundu SC.
    J Colloid Interface Sci; 2016 Jun 15; 472():16-33. PubMed ID: 26998786
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Enhanced osteogenic potential of human mesenchymal stem cells on electrospun nanofibrous scaffolds prepared from eri-tasar silk fibroin.
    Panda NN, Biswas A, Pramanik K, Jonnalagadda S.
    J Biomed Mater Res B Appl Biomater; 2015 Jul 15; 103(5):971-82. PubMed ID: 25176408
    [Abstract] [Full Text] [Related]

  • 16. Biomimetic hybrid nanofibrous substrates for mesenchymal stem cells differentiation into osteogenic cells.
    Gandhimathi C, Venugopal JR, Tham AY, Ramakrishna S, Kumar SD.
    Mater Sci Eng C Mater Biol Appl; 2015 Apr 15; 49():776-785. PubMed ID: 25687008
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Effect of different mineralization processes on in vitro and in vivo bone regeneration and osteoblast-macrophage cross-talk in co-culture system using dual growth factor mediated non-mulberry silk fibroin grafted poly (Є-caprolactone) nanofibrous scaffold.
    Bhattacharjee P, Maiti TK, Bhattacharya D, Nandi SK.
    Colloids Surf B Biointerfaces; 2017 Aug 01; 156():270-281. PubMed ID: 28544959
    [Abstract] [Full Text] [Related]

  • 19. Coaxial electrospun aligned tussah silk fibroin nanostructured fiber scaffolds embedded with hydroxyapatite-tussah silk fibroin nanoparticles for bone tissue engineering.
    Shao W, He J, Sang F, Ding B, Chen L, Cui S, Li K, Han Q, Tan W.
    Mater Sci Eng C Mater Biol Appl; 2016 Jan 01; 58():342-51. PubMed ID: 26478319
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 30.