These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


118 related items for PubMed ID: 25095360

  • 1. [Residue decline dynamics and safety utilization of carbendazim in cultivation of Anoectochilus roxburghii].
    Shao QS, Liu HB, Zhang YY, Zhang AL, Li MY.
    Zhongguo Zhong Yao Za Zhi; 2014 May; 39(9):1559-63. PubMed ID: 25095360
    [Abstract] [Full Text] [Related]

  • 2. [Safe use of carbendazim in GAP of Atractylodes macrocephala].
    Lin J, Wei H, Wang T, Wu J, Xue J.
    Zhongguo Zhong Yao Za Zhi; 2010 Jul; 35(13):1674-8. PubMed ID: 20862954
    [Abstract] [Full Text] [Related]

  • 3. Dynamics of carbendazim residue in Panax notoginseng and soil.
    Wu J, Wei H, Sui X, Lin J, Wang T, Fen G, Xue J.
    Bull Environ Contam Toxicol; 2010 Apr; 84(4):469-72. PubMed ID: 20306171
    [Abstract] [Full Text] [Related]

  • 4. [Study on standard of safe application of thiamethoxam on GAP of Lonicera japonica].
    Liu YN, Li Y, Dong J, Zhang JL, Wang PS, Ding WL.
    Zhongguo Zhong Yao Za Zhi; 2015 Sep; 40(18):3538-42. PubMed ID: 26983196
    [Abstract] [Full Text] [Related]

  • 5. Absorption, translocation, and accumulation of carbendazim in opium poppy (Papaver somniferum L.).
    Banerji R, Dixit BS, Singh SP, Verma SC.
    Bull Environ Contam Toxicol; 1995 Aug; 55(2):283-8. PubMed ID: 7579936
    [No Abstract] [Full Text] [Related]

  • 6. Determination, dissipation dynamics, terminal residues and dietary risk assessment of thiophanate-methyl and its metabolite carbendazim in cowpeas collected from different locations in China under field conditions.
    Liu Z, Chen Y, Han J, Chen D, Yang G, Lan T, Li J, Zhang K.
    J Sci Food Agric; 2021 Oct; 101(13):5498-5507. PubMed ID: 33682088
    [Abstract] [Full Text] [Related]

  • 7. Assessment of Carbendazim Residues and Safety in Celery Under Different Cultivation Conditions.
    Chen L, Wu C, Xu M, Cang T, Wang X, Zhao X, Zhang C.
    Bull Environ Contam Toxicol; 2021 Aug; 107(2):276-280. PubMed ID: 31950217
    [Abstract] [Full Text] [Related]

  • 8. Carbendazim and metalaxyl residues in post-harvest treated apples.
    Su Y, Mitchell SH, Mac AntSaoir S.
    Food Addit Contam; 2003 Aug; 20(8):720-7. PubMed ID: 13129789
    [Abstract] [Full Text] [Related]

  • 9. Optimization of a matrix solid-phase dispersion method for the determination analysis of carbendazim residue in plant material.
    Michel M, Buszewski B.
    J Chromatogr B Analyt Technol Biomed Life Sci; 2004 Feb 05; 800(1-2):309-14. PubMed ID: 14698271
    [Abstract] [Full Text] [Related]

  • 10. Spinach or amaranth may represent highest residue of thiophanate-methyl with open field application on six leaf vegetables.
    Fan S, Zhao P, Zhang F, Yu C, Pan C.
    Bull Environ Contam Toxicol; 2013 Apr 05; 90(4):477-81. PubMed ID: 23242258
    [Abstract] [Full Text] [Related]

  • 11. Synthesis and bioactivity of indoleacetic acid-carbendazim and its effects on Cylindrocladium parasiticum.
    Yang J, Ye T, Liu G, Xu X, Zheng Y, Wang W.
    Pestic Biochem Physiol; 2019 Jul 05; 158():128-134. PubMed ID: 31378348
    [Abstract] [Full Text] [Related]

  • 12. Determination of carbendazim residues in fruit juices by liquid chromatography-tandem mass spectrometry.
    Grujic S, Radisic M, Vasiljevic T, Lausevic M.
    Food Addit Contam; 2005 Nov 05; 22(11):1132-7. PubMed ID: 16332637
    [Abstract] [Full Text] [Related]

  • 13. Kinetics of degradation of carbendazim by B. subtilis strains: possibility of in situ detoxification.
    Salunkhe VP, Sawant IS, Banerjee K, Wadkar PN, Sawant SD, Hingmire SA.
    Environ Monit Assess; 2014 Dec 05; 186(12):8599-610. PubMed ID: 25179945
    [Abstract] [Full Text] [Related]

  • 14. Monitoring residues of carbendazim (applied as benomyl) and thiabendazole in Wellspur apples.
    Mònico-Pifarré A, Xirau-Vayreda M.
    J Assoc Off Anal Chem; 1987 Dec 05; 70(3):596-8. PubMed ID: 3610978
    [Abstract] [Full Text] [Related]

  • 15. Exposure of carbendazim induces structural and functional alteration in garlic phytocystatin: An in vitro multi-spectroscopic approach.
    Siddiqui MF, Bano B.
    Pestic Biochem Physiol; 2018 Feb 05; 145():66-75. PubMed ID: 29482733
    [Abstract] [Full Text] [Related]

  • 16. Effect of carbendazim and physicochemical factors on the growth and ochratoxin A production of Aspergillus carbonarius isolated from grapes.
    Medina A, Mateo R, Valle-Algarra FM, Mateo EM, Jiménez M.
    Int J Food Microbiol; 2007 Nov 01; 119(3):230-5. PubMed ID: 17765991
    [Abstract] [Full Text] [Related]

  • 17. Avoidance response of Enchytraeus albidus in relation to carbendazim ageing.
    Kobeticová K, Hofman J, Holoubek I.
    Environ Pollut; 2009 Feb 01; 157(2):704-6. PubMed ID: 18992976
    [Abstract] [Full Text] [Related]

  • 18. Transfer assessment of carbendazim residues from rapeseed to oil production determined by HPLC-MS/MS.
    Li Y, Hu J, Yao Z, Wang Q, Zhang H.
    J Environ Sci Health B; 2020 Feb 01; 55(8):726-731. PubMed ID: 32558617
    [Abstract] [Full Text] [Related]

  • 19. Dose-dependent effects of carbendazim on rat thymus.
    Songür SH, Koçkaya EA, Selmanoĝlu G, Barlas N.
    Cell Biochem Funct; 2005 Feb 01; 23(6):457-60. PubMed ID: 15584094
    [Abstract] [Full Text] [Related]

  • 20. [Pharmacognostical identification of Anoectochilus roxburghii].
    Zheng C, Huang Y, Pan X, Ji L.
    Zhong Yao Cai; 1997 Nov 01; 20(11):552-4. PubMed ID: 12572511
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.