These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Simultaneous control of pH and ionic strength during interfacial rheology of β-lactoglobulin fibrils adsorbed at liquid/liquid Interfaces. Rühs PA, Scheuble N, Windhab EJ, Mezzenga R, Fischer P. Langmuir; 2012 Aug 28; 28(34):12536-43. PubMed ID: 22857147 [Abstract] [Full Text] [Related]
10. Dynamic and viscoelastic interfacial behavior of β-lactoglobulin microgels of varying sizes at fluid interfaces. Murphy RW, Farkas BE, Jones OG. J Colloid Interface Sci; 2016 Mar 15; 466():12-9. PubMed ID: 26701187 [Abstract] [Full Text] [Related]
11. Gelation, phase behavior, and dynamics of β-lactoglobulin amyloid fibrils at varying concentrations and ionic strengths. Bolisetty S, Harnau L, Jung JM, Mezzenga R. Biomacromolecules; 2012 Oct 08; 13(10):3241-52. PubMed ID: 22924940 [Abstract] [Full Text] [Related]
12. Systematic analysis of aggregates from 38 kinds of non disease-related proteins: identifying the intrinsic propensity of polypeptides to form amyloid fibrils. Aso Y, Shiraki K, Takagi M. Biosci Biotechnol Biochem; 2007 May 08; 71(5):1313-21. PubMed ID: 17485839 [Abstract] [Full Text] [Related]
15. Macromolecular crowding modulates the kinetics and morphology of amyloid self-assembly by β-lactoglobulin. Ma B, Xie J, Wei L, Li W. Int J Biol Macromol; 2013 Feb 01; 53():82-7. PubMed ID: 23148946 [Abstract] [Full Text] [Related]
17. Effects of a flow field on amyloid fibrillogenesis in a β-lactoglobulin solution. Sharma RK, Furusawa K, Fukui A, Sasaki N. Int J Biol Macromol; 2014 Sep 01; 70():490-7. PubMed ID: 25062994 [Abstract] [Full Text] [Related]