These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
180 related items for PubMed ID: 2510122
21. Contribution of beta-lactamase hydrolysis and outer membrane permeability to ceftriaxone resistance in Enterobacter cloacae. Marchou B, Bellido F, Charnas R, Lucain C, Pechère JC. Antimicrob Agents Chemother; 1987 Oct; 31(10):1589-95. PubMed ID: 3501699 [Abstract] [Full Text] [Related]
22. Inhibitory effect of clindamycin on production of beta-lactamase in beta-lactam-resistant bacteria. Nishihata T, Kunieda S, Nakahama C, Soejima R. Biol Pharm Bull; 1994 May; 17(5):715-20. PubMed ID: 7920440 [Abstract] [Full Text] [Related]
23. Multiply resistant mutants of Enterobacter cloacae selected by beta-lactam antibiotics. Then RL, Angehrn P. Antimicrob Agents Chemother; 1986 Nov; 30(5):684-8. PubMed ID: 3492174 [Abstract] [Full Text] [Related]
24. Emergence of resistance to beta-lactam antibiotics in Pseudomonas aeruginosa during treatment with new beta-lactams. Lerner SA, Quinn JP. Chemioterapia; 1985 Feb; 4(1):95-101. PubMed ID: 3921267 [Abstract] [Full Text] [Related]
25. Role of beta-lactam hydrolysis in the mechanism of resistance of a beta-lactamase-constitutive Enterobacter cloacae strain to expanded-spectrum beta-lactams. Vu H, Nikaido H. Antimicrob Agents Chemother; 1985 Mar; 27(3):393-8. PubMed ID: 3873215 [Abstract] [Full Text] [Related]
26. [Beta-lactam resistance in aquatic Enterobacter cloacae strains using phenotypic and genotypic criteria]. Lazăr V, Cernat R, Balotescu C, Cotar A, Coipan E, Cojocaru C. Bacteriol Virusol Parazitol Epidemiol; 2002 Mar; 47(3-4):185-91. PubMed ID: 15085610 [Abstract] [Full Text] [Related]
28. Emergence of resistance during therapy with the newer beta-lactam antibiotics: role of inducible beta-lactamases and implications for the future. Sanders CC, Sanders WE. Rev Infect Dis; 1983 Mar; 5(4):639-48. PubMed ID: 6353526 [Abstract] [Full Text] [Related]
29. Emergence of cross-resistance to imipenem and other beta-lactam antibiotics in Pseudomonas aeruginosa during therapy. Pagani L, Landini P, Luzzaro F, Debiaggi M, Romero E. Microbiologica; 1990 Jan; 13(1):43-53. PubMed ID: 2155376 [Abstract] [Full Text] [Related]
30. Contribution of chromosomal beta-lactamases to beta-lactam resistance in enterobacteria. Lindberg F, Normark S. Rev Infect Dis; 1986 Jan; 8 Suppl 3():S292-304. PubMed ID: 3529322 [Abstract] [Full Text] [Related]
31. Lipopolysaccharide alterations responsible for combined quinolone and beta-lactam resistance in Pseudomonas aeruginosa. Leying HJ, Büscher KH, Cullmann W, Then RL. Chemotherapy; 1992 Jan; 38(2):82-91. PubMed ID: 1591950 [Abstract] [Full Text] [Related]
35. Investigation of various antibiotic combinations using the E-Test method in multiresistant Pseudomonas aeruginosa strains. Kocazeybek B, Arabaci U, Erentürk S, Akdur H. Chemotherapy; 2002 Mar; 48(1):31-5. PubMed ID: 11901254 [Abstract] [Full Text] [Related]
36. Resistance of Pseudomonas aeruginosa to new beta-lactamase-resistant beta-lactams. Godfrey AJ, Bryan LE. Antimicrob Agents Chemother; 1984 Oct; 26(4):485-8. PubMed ID: 6440472 [Abstract] [Full Text] [Related]
37. Some properties of Serratia marcescens, Salmonella paratyphi A, and Enterobacter cloacae with non-enzyme-dependent multiple resistance to beta-lactam antibiotics, aminoglycosides, and quinolones. Dang P, Gutmann L, Quentin C, Williamson R, Collatz E. Rev Infect Dis; 1988 Oct; 10(4):899-904. PubMed ID: 3055181 [Abstract] [Full Text] [Related]