These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Atomic orbital-based SOS-MP2 with tensor hypercontraction. I. GPU-based tensor construction and exploiting sparsity. Song C, Martínez TJ. J Chem Phys; 2016 May 07; 144(17):174111. PubMed ID: 27155629 [Abstract] [Full Text] [Related]
4. Selected-Nuclei Method for the Computation of Hyperfine Coupling Constants within Second-Order Møller-Plesset Perturbation Theory. Vogler S, Savasci G, Ludwig M, Ochsenfeld C. J Chem Theory Comput; 2018 Jun 12; 14(6):3014-3024. PubMed ID: 29762028 [Abstract] [Full Text] [Related]
5. Atomic orbital-based SOS-MP2 with tensor hypercontraction. II. Local tensor hypercontraction. Song C, Martínez TJ. J Chem Phys; 2017 Jan 21; 146(3):034104. PubMed ID: 28109237 [Abstract] [Full Text] [Related]
6. Resolution of the identity atomic orbital Laplace transformed second order Møller-Plesset theory for nonconducting periodic systems. Izmaylov AF, Scuseria GE. Phys Chem Chem Phys; 2008 Jun 21; 10(23):3421-9. PubMed ID: 18535725 [Abstract] [Full Text] [Related]
7. Linear-scaling symmetry-adapted perturbation theory with scaled dispersion. Maurer SA, Beer M, Lambrecht DS, Ochsenfeld C. J Chem Phys; 2013 Nov 14; 139(18):184104. PubMed ID: 24320251 [Abstract] [Full Text] [Related]
13. Low-Scaling Tensor Hypercontraction in the Cholesky Molecular Orbital Basis Applied to Second-Order Møller-Plesset Perturbation Theory. Bangerter FH, Glasbrenner M, Ochsenfeld C. J Chem Theory Comput; 2021 Jan 12; 17(1):211-221. PubMed ID: 33375790 [Abstract] [Full Text] [Related]
14. An improved algorithm for analytical gradient evaluation in resolution-of-the-identity second-order Møller-Plesset perturbation theory: application to alanine tetrapeptide conformational analysis. Distasio RA, Steele RP, Rhee YM, Shao Y, Head-Gordon M. J Comput Chem; 2007 Apr 15; 28(5):839-56. PubMed ID: 17219361 [Abstract] [Full Text] [Related]
15. Derivation of general analytic gradient expressions for density-fitted post-Hartree-Fock methods: an efficient implementation for the density-fitted second-order Møller-Plesset perturbation theory. Bozkaya U. J Chem Phys; 2014 Sep 28; 141(12):124108. PubMed ID: 25273413 [Abstract] [Full Text] [Related]
16. Sparse tensor based nuclear gradients for periodic Hartree-Fock and low-scaling correlated wave function methods in the CP2K software package: A massively parallel and GPU accelerated implementation. Bussy A, Schütt O, Hutter J. J Chem Phys; 2023 Apr 28; 158(16):. PubMed ID: 37102449 [Abstract] [Full Text] [Related]