These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


306 related items for PubMed ID: 25122918

  • 1. Adaptive changes in echolocation sounds by Pipistrellus abramus in response to artificial jamming sounds.
    Takahashi E, Hyomoto K, Riquimaroux H, Watanabe Y, Ohta T, Hiryu S.
    J Exp Biol; 2014 Aug 15; 217(Pt 16):2885-91. PubMed ID: 25122918
    [Abstract] [Full Text] [Related]

  • 2. Rapid frequency control of sonar sounds by the FM bat, Miniopterus fuliginosus, in response to spectral overlap.
    Hase K, Miyamoto T, Kobayasi KI, Hiryu S.
    Behav Processes; 2016 Jul 15; 128():126-33. PubMed ID: 27157002
    [Abstract] [Full Text] [Related]

  • 3. Adaptive frequency shifts of echolocation sounds in Miniopterus fuliginosus according to the frequency-modulated pattern of jamming sounds.
    Maitani Y, Hase K, Kobayasi KI, Hiryu S.
    J Exp Biol; 2018 Nov 26; 221(Pt 23):. PubMed ID: 30322982
    [Abstract] [Full Text] [Related]

  • 4. Adaptive echolocation sounds of insectivorous bats, Pipistrellus abramus, during foraging flights in the field.
    Hiryu S, Hagino T, Fujioka E, Riquimaroux H, Watanabe Y.
    J Acoust Soc Am; 2008 Aug 26; 124(2):EL51-6. PubMed ID: 18681502
    [Abstract] [Full Text] [Related]

  • 5. Jamming avoidance response of big brown bats in target detection.
    Bates ME, Stamper SA, Simmons JA.
    J Exp Biol; 2008 Jan 26; 211(Pt 1):106-13. PubMed ID: 18083738
    [Abstract] [Full Text] [Related]

  • 6. Echo-intensity compensation in echolocating bats (Pipistrellus abramus) during flight measured by a telemetry microphone.
    Hiryu S, Hagino T, Riquimaroux H, Watanabe Y.
    J Acoust Soc Am; 2007 Mar 26; 121(3):1749-57. PubMed ID: 17407911
    [Abstract] [Full Text] [Related]

  • 7. Species-specific control of acoustic gaze by echolocating bats, Rhinolophus ferrumequinum nippon and Pipistrellus abramus, during flight.
    Yamada Y, Hiryu S, Watanabe Y.
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2016 Nov 26; 202(11):791-801. PubMed ID: 27566319
    [Abstract] [Full Text] [Related]

  • 8. Adaptive beam-width control of echolocation sounds by CF-FM bats, Rhinolophus ferrumequinum nippon, during prey-capture flight.
    Matsuta N, Hiryu S, Fujioka E, Yamada Y, Riquimaroux H, Watanabe Y.
    J Exp Biol; 2013 Apr 01; 216(Pt 7):1210-8. PubMed ID: 23487269
    [Abstract] [Full Text] [Related]

  • 9. Calling louder and longer: how bats use biosonar under severe acoustic interference from other bats.
    Amichai E, Blumrosen G, Yovel Y.
    Proc Biol Sci; 2015 Dec 22; 282(1821):20152064. PubMed ID: 26702045
    [Abstract] [Full Text] [Related]

  • 10. Bats jamming bats: food competition through sonar interference.
    Corcoran AJ, Conner WE.
    Science; 2014 Nov 07; 346(6210):745-7. PubMed ID: 25378624
    [Abstract] [Full Text] [Related]

  • 11. [Sound duration and sound pattern affect the recovery cycles of inferior collicular neurons in leaf-nosed bat, Hipposideros armiger].
    Tang J, Fu ZY, Wu FJ.
    Sheng Li Xue Bao; 2010 Oct 25; 62(5):469-77. PubMed ID: 20945051
    [Abstract] [Full Text] [Related]

  • 12. Rapid jamming avoidance in biosonar.
    Gillam EH, Ulanovsky N, McCracken GF.
    Proc Biol Sci; 2007 Mar 07; 274(1610):651-60. PubMed ID: 17254989
    [Abstract] [Full Text] [Related]

  • 13. Modeling perspectives on echolocation strategies inspired by bats flying in groups.
    Lin Y, Abaid N.
    J Theor Biol; 2015 Dec 21; 387():46-53. PubMed ID: 26386143
    [Abstract] [Full Text] [Related]

  • 14. Auditory brainstem responses of Japanese house bats (Pipistrellus abramus) after exposure to broadband ultrasonic noise.
    Simmons AM, Boku S, Riquimaroux H, Simmons JA.
    J Acoust Soc Am; 2015 Oct 21; 138(4):2430-7. PubMed ID: 26520325
    [Abstract] [Full Text] [Related]

  • 15. Echolocation and flight strategy of Japanese house bats during natural foraging, revealed by a microphone array system.
    Fujioka E, Mantani S, Hiryu S, Riquimaroux H, Watanabe Y.
    J Acoust Soc Am; 2011 Feb 21; 129(2):1081-8. PubMed ID: 21361464
    [Abstract] [Full Text] [Related]

  • 16. Frequency tuning and latency organization of responses in the inferior colliculus of Japanese house bat, Pipistrellus abramus.
    Goto K, Hiryu S, Riquimaroux H.
    J Acoust Soc Am; 2010 Sep 21; 128(3):1452-9. PubMed ID: 20815479
    [Abstract] [Full Text] [Related]

  • 17. On-board recordings reveal no jamming avoidance in wild bats.
    Cvikel N, Levin E, Hurme E, Borissov I, Boonman A, Amichai E, Yovel Y.
    Proc Biol Sci; 2015 Jan 07; 282(1798):20142274. PubMed ID: 25429017
    [Abstract] [Full Text] [Related]

  • 18. Doppler-shift compensation in the Taiwanese leaf-nosed bat (Hipposideros terasensis) recorded with a telemetry microphone system during flight.
    Hiryu S, Katsura K, Lin LK, Riquimaroux H, Watanabe Y.
    J Acoust Soc Am; 2005 Dec 07; 118(6):3927-33. PubMed ID: 16419835
    [Abstract] [Full Text] [Related]

  • 19. No evidence for spectral jamming avoidance in echolocation behavior of foraging pipistrelle bats.
    Götze S, Koblitz JC, Denzinger A, Schnitzler HU.
    Sci Rep; 2016 Aug 09; 6():30978. PubMed ID: 27502900
    [Abstract] [Full Text] [Related]

  • 20. Active acoustic interference elicits echolocation changes in heterospecific bats.
    Jones TK, Wohlgemuth MJ, Conner WE.
    J Exp Biol; 2018 Aug 13; 221(Pt 15):. PubMed ID: 29950451
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.