These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
251 related items for PubMed ID: 25125041
1. Differential contributions of two SARP family regulatory genes to indigoidine biosynthesis in Streptomyces lavendulae FRI-5. Kurniawan YN, Kitani S, Maeda A, Nihira T. Appl Microbiol Biotechnol; 2014 Dec; 98(23):9713-21. PubMed ID: 25125041 [Abstract] [Full Text] [Related]
2. Control of secondary metabolism by farX, which is involved in the gamma-butyrolactone biosynthesis of Streptomyces lavendulae FRI-5. Kitani S, Doi M, Shimizu T, Maeda A, Nihira T. Arch Microbiol; 2010 Mar; 192(3):211-20. PubMed ID: 20131045 [Abstract] [Full Text] [Related]
3. Identification of genes involved in the butyrolactone autoregulator cascade that modulates secondary metabolism in Streptomyces lavendulae FRI-5. Kitani S, Iida A, Izumi TA, Maeda A, Yamada Y, Nihira T. Gene; 2008 Dec 01; 425(1-2):9-16. PubMed ID: 18761063 [Abstract] [Full Text] [Related]
4. Regulation of production of the blue pigment indigoidine by the pseudo γ-butyrolactone receptor FarR2 in Streptomyces lavendulae FRI-5. Kurniawan YN, Kitani S, Iida A, Maeda A, Lycklama a Nijeholt J, Lee YJ, Nihira T. J Biosci Bioeng; 2016 Apr 01; 121(4):372-9. PubMed ID: 26375200 [Abstract] [Full Text] [Related]
5. Identification and characterization of lbpA, an indigoidine biosynthetic gene in the γ-butyrolactone signaling system of Streptomyces lavendulae FRI-5. Pait IGU, Kitani S, Kurniawan YN, Asa M, Iwai T, Ikeda H, Nihira T. J Biosci Bioeng; 2017 Oct 01; 124(4):369-375. PubMed ID: 28533156 [Abstract] [Full Text] [Related]
6. Gene replacement analysis of the butyrolactone autoregulator receptor (FarA) reveals that FarA acts as a Novel regulator in secondary metabolism of Streptomyces lavendulae FRI-5. Kitani S, Yamada Y, Nihira T. J Bacteriol; 2001 Jul 01; 183(14):4357-63. PubMed ID: 11418577 [Abstract] [Full Text] [Related]
7. Promoter Engineering Reveals the Importance of Heptameric Direct Repeats for DNA Binding by Streptomyces Antibiotic Regulatory Protein-Large ATP-Binding Regulator of the LuxR Family (SARP-LAL) Regulators in Streptomyces natalensis. Barreales EG, Vicente CM, de Pedro A, Santos-Aberturas J, Aparicio JF. Appl Environ Microbiol; 2018 May 15; 84(10):. PubMed ID: 29500267 [Abstract] [Full Text] [Related]
10. Regulation of lankamycin biosynthesis in Streptomyces rochei by two SARP genes, srrY and srrZ. Suzuki T, Mochizuki S, Yamamoto S, Arakawa K, Kinashi H. Biosci Biotechnol Biochem; 2010 May 15; 74(4):819-27. PubMed ID: 20378964 [Abstract] [Full Text] [Related]
11. A Complex Signaling Cascade Governs Pristinamycin Biosynthesis in Streptomyces pristinaespiralis. Mast Y, Guezguez J, Handel F, Schinko E. Appl Environ Microbiol; 2015 Oct 15; 81(19):6621-36. PubMed ID: 26187956 [Abstract] [Full Text] [Related]
12. Involvement of AlpV, a new member of the Streptomyces antibiotic regulatory protein family, in regulation of the duplicated type II polyketide synthase alp gene cluster in Streptomyces ambofaciens. Aigle B, Pang X, Decaris B, Leblond P. J Bacteriol; 2005 Apr 15; 187(7):2491-500. PubMed ID: 15774892 [Abstract] [Full Text] [Related]
13. Engineering of regulatory cascades and networks controlling antibiotic biosynthesis in Streptomyces. Martín JF, Liras P. Curr Opin Microbiol; 2010 Jun 15; 13(3):263-73. PubMed ID: 20303823 [Abstract] [Full Text] [Related]
14. Waking up Streptomyces secondary metabolism by constitutive expression of activators or genetic disruption of repressors. Aigle B, Corre C. Methods Enzymol; 2012 Jun 15; 517():343-66. PubMed ID: 23084947 [Abstract] [Full Text] [Related]
15. Identification and characterization of an indigoidine-like gene for a blue pigment biosynthesis in Streptomyces aureofaciens CCM 3239. Novakova R, Odnogova Z, Kutas P, Feckova L, Kormanec J. Folia Microbiol (Praha); 2010 Mar 15; 55(2):119-25. PubMed ID: 20490753 [Abstract] [Full Text] [Related]
16. Characterization of indigoidine biosynthetic genes in Erwinia chrysanthemi and role of this blue pigment in pathogenicity. Reverchon S, Rouanet C, Expert D, Nasser W. J Bacteriol; 2002 Feb 15; 184(3):654-65. PubMed ID: 11790734 [Abstract] [Full Text] [Related]
17. Identification of two novel regulatory genes involved in pristinamycin biosynthesis and elucidation of the mechanism for AtrA-p-mediated regulation in Streptomyces pristinaespiralis. Wang W, Tian J, Li L, Ge M, Zhu H, Zheng G, Huang H, Ruan L, Jiang W, Lu Y. Appl Microbiol Biotechnol; 2015 Sep 15; 99(17):7151-64. PubMed ID: 25957493 [Abstract] [Full Text] [Related]
18. Cascades and networks of regulatory genes that control antibiotic biosynthesis. Martín JF, Liras P. Subcell Biochem; 2012 Sep 15; 64():115-38. PubMed ID: 23080248 [Abstract] [Full Text] [Related]
19. [Function of Streptomyces antibiotic regulatory proteins family transcriptional regulator ctcB in the biosynthetic cluster of chlortetracycline]. Liu J, Zhu T, Wang P, Kong L, Wang S, Liu Y, Xie C, Deng Z, You D. Wei Sheng Wu Xue Bao; 2016 Sep 15; 56(9):1486-95. PubMed ID: 29738221 [Abstract] [Full Text] [Related]
20. A gene determining a new member of the SARP family contributes to transcription of genes for the synthesis of the angucycline polyketide auricin in Streptomyces aureofaciens CCM 3239. Rehakova A, Novakova R, Feckova L, Mingyar E, Kormanec J. FEMS Microbiol Lett; 2013 Sep 15; 346(1):45-55. PubMed ID: 23763439 [Abstract] [Full Text] [Related] Page: [Next] [New Search]