These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Biomass enzymatic saccharification is determined by the non-KOH-extractable wall polymer features that predominately affect cellulose crystallinity in corn. Jia J, Yu B, Wu L, Wang H, Wu Z, Li M, Huang P, Feng S, Chen P, Zheng Y, Peng L. PLoS One; 2014; 9(9):e108449. PubMed ID: 25251456 [Abstract] [Full Text] [Related]
6. Lignin extraction distinctively enhances biomass enzymatic saccharification in hemicelluloses-rich Miscanthus species under various alkali and acid pretreatments. Si S, Chen Y, Fan C, Hu H, Li Y, Huang J, Liao H, Hao B, Li Q, Peng L, Tu Y. Bioresour Technol; 2015 May; 183():248-54. PubMed ID: 25746301 [Abstract] [Full Text] [Related]
7. Genotype, development and tissue-derived variation of cell-wall properties in the lignocellulosic energy crop Miscanthus. da Costa RM, Lee SJ, Allison GG, Hazen SP, Winters A, Bosch M. Ann Bot; 2014 Oct; 114(6):1265-77. PubMed ID: 24737720 [Abstract] [Full Text] [Related]
11. Mild alkali-pretreatment effectively extracts guaiacyl-rich lignin for high lignocellulose digestibility coupled with largely diminishing yeast fermentation inhibitors in Miscanthus. Li M, Si S, Hao B, Zha Y, Wan C, Hong S, Kang Y, Jia J, Zhang J, Li M, Zhao C, Tu Y, Zhou S, Peng L. Bioresour Technol; 2014 Oct; 169():447-454. PubMed ID: 25079210 [Abstract] [Full Text] [Related]
12. A finalized determinant for complete lignocellulose enzymatic saccharification potential to maximize bioethanol production in bioenergy Miscanthus. Alam A, Zhang R, Liu P, Huang J, Wang Y, Hu Z, Madadi M, Sun D, Hu R, Ragauskas AJ, Tu Y, Peng L. Biotechnol Biofuels; 2019 Oct; 12():99. PubMed ID: 31057665 [Abstract] [Full Text] [Related]
14. Distinct Geographical Distribution of the Miscanthus Accessions with Varied Biomass Enzymatic Saccharification. Li X, Liao H, Fan C, Hu H, Li Y, Li J, Yi Z, Cai X, Peng L, Tu Y. PLoS One; 2016 Oct; 11(8):e0160026. PubMed ID: 27532636 [Abstract] [Full Text] [Related]
15. Sugar-rich sweet sorghum is distinctively affected by wall polymer features for biomass digestibility and ethanol fermentation in bagasse. Li M, Feng S, Wu L, Li Y, Fan C, Zhang R, Zou W, Tu Y, Jing HC, Li S, Peng L. Bioresour Technol; 2014 Sep; 167():14-23. PubMed ID: 24968107 [Abstract] [Full Text] [Related]
16. Inhibition of enzymatic cellulolysis by phenolic compounds. Tejirian A, Xu F. Enzyme Microb Technol; 2011 Mar 07; 48(3):239-47. PubMed ID: 22112906 [Abstract] [Full Text] [Related]
17. Identifying new lignin bioengineering targets: 1. Monolignol-substitute impacts on lignin formation and cell wall fermentability. Grabber JH, Schatz PF, Kim H, Lu F, Ralph J. BMC Plant Biol; 2010 Jun 17; 10():114. PubMed ID: 20565789 [Abstract] [Full Text] [Related]
20. The in vivo impact of MsLAC1, a Miscanthus laccase isoform, on lignification and lignin composition contrasts with its in vitro substrate preference. He F, Machemer-Noonan K, Golfier P, Unda F, Dechert J, Zhang W, Hoffmann N, Samuels L, Mansfield SD, Rausch T, Wolf S. BMC Plant Biol; 2019 Dec 12; 19(1):552. PubMed ID: 31830911 [Abstract] [Full Text] [Related] Page: [Next] [New Search]