These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


353 related items for PubMed ID: 25136805

  • 1. Transcriptome analysis of the oil-rich tea plant, Camellia oleifera, reveals candidate genes related to lipid metabolism.
    Xia EH, Jiang JJ, Huang H, Zhang LP, Zhang HB, Gao LZ.
    PLoS One; 2014; 9(8):e104150. PubMed ID: 25136805
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Seed Transcriptomics Analysis in Camellia oleifera Uncovers Genes Associated with Oil Content and Fatty Acid Composition.
    Lin P, Wang K, Zhou C, Xie Y, Yao X, Yin H.
    Int J Mol Sci; 2018 Jan 02; 19(1):. PubMed ID: 29301285
    [Abstract] [Full Text] [Related]

  • 6. Identification of miRNA-mRNA Regulatory Modules Involved in Lipid Metabolism and Seed Development in a Woody Oil Tree (Camellia oleifera).
    Wu B, Ruan C, Shah AH, Li D, Li H, Ding J, Li J, Du W.
    Cells; 2021 Dec 27; 11(1):. PubMed ID: 35011633
    [Abstract] [Full Text] [Related]

  • 7. Leaf transcriptome analysis of a subtropical evergreen broadleaf plant, wild oil-tea camellia (Camellia oleifera), revealing candidate genes for cold acclimation.
    Chen J, Yang X, Huang X, Duan S, Long C, Chen J, Rong J.
    BMC Genomics; 2017 Feb 28; 18(1):211. PubMed ID: 28241790
    [Abstract] [Full Text] [Related]

  • 8. Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds.
    Shi CY, Yang H, Wei CL, Yu O, Zhang ZZ, Jiang CJ, Sun J, Li YY, Chen Q, Xia T, Wan XC.
    BMC Genomics; 2011 Feb 28; 12():131. PubMed ID: 21356090
    [Abstract] [Full Text] [Related]

  • 9. Comparative Transcriptomic and Lipidomic Analysis of Fatty Acid Accumulation in Three Camellia oleifera Varieties During Seed Maturing.
    Yang D, Wang R, Lai H, He Y, Chen Y, Xun C, Zhang Y, He Z.
    J Agric Food Chem; 2024 Aug 14; 72(32):18257-18270. PubMed ID: 39084609
    [Abstract] [Full Text] [Related]

  • 10. Transcriptome analysis of the tea oil camellia (Camellia oleifera) reveals candidate drought stress genes.
    Dong B, Wu B, Hong W, Li X, Li Z, Xue L, Huang Y.
    PLoS One; 2017 Aug 14; 12(7):e0181835. PubMed ID: 28759610
    [Abstract] [Full Text] [Related]

  • 11. Association Genetics Identifies Single Nucleotide Polymorphisms Related to Kernel Oil Content and Quality in Camellia oleifera.
    Lin P, Yin H, Yan C, Yao X, Wang K.
    J Agric Food Chem; 2019 Mar 06; 67(9):2547-2562. PubMed ID: 30758959
    [Abstract] [Full Text] [Related]

  • 12. Transcriptomic Analyses of Camellia oleifera 'Huaxin' Leaf Reveal Candidate Genes Related to Long-Term Cold Stress.
    Wu L, Li J, Li Z, Zhang F, Tan X.
    Int J Mol Sci; 2020 Jan 28; 21(3):. PubMed ID: 32013013
    [Abstract] [Full Text] [Related]

  • 13. Comparative study on fruit development and oil synthesis in two cultivars of Camellia oleifera.
    Zhang F, Li Z, Zhou J, Gu Y, Tan X.
    BMC Plant Biol; 2021 Jul 23; 21(1):348. PubMed ID: 34301189
    [Abstract] [Full Text] [Related]

  • 14. De novo transcriptome assembly of the wild relative of tea tree (Camellia taliensis) and comparative analysis with tea transcriptome identified putative genes associated with tea quality and stress response.
    Zhang HB, Xia EH, Huang H, Jiang JJ, Liu BY, Gao LZ.
    BMC Genomics; 2015 Apr 15; 16(1):298. PubMed ID: 25881092
    [Abstract] [Full Text] [Related]

  • 15. Transcriptomic and phytochemical analysis of the biosynthesis of characteristic constituents in tea (Camellia sinensis) compared with oil tea (Camellia oleifera).
    Tai Y, Wei C, Yang H, Zhang L, Chen Q, Deng W, Wei S, Zhang J, Fang C, Ho C, Wan X.
    BMC Plant Biol; 2015 Aug 07; 15():190. PubMed ID: 26245644
    [Abstract] [Full Text] [Related]

  • 16. High throughput sequencing of small RNAs reveals dynamic microRNAs expression of lipid metabolism during Camellia oleifera and C. meiocarpa seed natural drying.
    Feng JL, Yang ZJ, Chen SP, El-Kassaby YA, Chen H.
    BMC Genomics; 2017 Jul 20; 18(1):546. PubMed ID: 28728593
    [Abstract] [Full Text] [Related]

  • 17. Transcriptome Analysis and Identification of Lipid Genes in Physaria lindheimeri, a Genetic Resource for Hydroxy Fatty Acids in Seed Oil.
    Chen GQ, Kim WN, Johnson K, Park ME, Lee KR, Kim HU.
    Int J Mol Sci; 2021 Jan 06; 22(2):. PubMed ID: 33419225
    [Abstract] [Full Text] [Related]

  • 18. TMT-Based Quantitative Proteomic Analysis Reveals the Crucial Biological Pathways Involved in Self-Incompatibility Responses in Camellia oleifera.
    He Y, Song Q, Wu Y, Ye S, Chen S, Chen H.
    Int J Mol Sci; 2020 Mar 14; 21(6):. PubMed ID: 32183315
    [Abstract] [Full Text] [Related]

  • 19. Comparative Transcriptomic Analysis Reveals Regulatory Mechanisms of Theanine Synthesis in Tea (Camellia sinensis) and Oil Tea (Camellia oleifera) Plants.
    Tai Y, Ling C, Wang H, Yang L, She G, Wang C, Yu S, Chen W, Liu C, Wan X.
    J Agric Food Chem; 2019 Sep 11; 67(36):10235-10244. PubMed ID: 31436988
    [Abstract] [Full Text] [Related]

  • 20. Transcriptome analysis revealed the dynamic oil accumulation in Symplocos paniculata fruit.
    Liu Q, Sun Y, Chen J, Li P, Li C, Niu G, Jiang L.
    BMC Genomics; 2016 Nov 16; 17(1):929. PubMed ID: 27852215
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.