These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


220 related items for PubMed ID: 25137593

  • 1. Anomalous crystallization as a signature of the fragile-to-strong transition in metallic glass-forming liquids.
    Yang X, Zhou C, Sun Q, Hu L, Mauro JC, Wang C, Yue Y.
    J Phys Chem B; 2014 Aug 28; 118(34):10258-65. PubMed ID: 25137593
    [Abstract] [Full Text] [Related]

  • 2. A Direct Link between the Fragile-to-Strong Transition and Relaxation in Supercooled Liquids.
    Sun Q, Zhou C, Yue Y, Hu L.
    J Phys Chem Lett; 2014 Apr 03; 5(7):1170-4. PubMed ID: 26274466
    [Abstract] [Full Text] [Related]

  • 3. Fragile-to-strong transition in metallic glass-forming liquids.
    Zhang C, Hu L, Yue Y, Mauro JC.
    J Chem Phys; 2010 Jul 07; 133(1):014508. PubMed ID: 20614977
    [Abstract] [Full Text] [Related]

  • 4. Structural evolution during fragile-to-strong transition in CuZr(Al) glass-forming liquids.
    Zhou C, Hu L, Sun Q, Zheng H, Zhang C, Yue Y.
    J Chem Phys; 2015 Feb 14; 142(6):064508. PubMed ID: 25681924
    [Abstract] [Full Text] [Related]

  • 5. Sub-T(g) relaxation patterns in Cu-based metallic glasses far from equilibrium.
    Wang C, Hu L, Wei C, Tong X, Zhou C, Sun Q, Hui X, Yue Y.
    J Chem Phys; 2014 Oct 28; 141(16):164507. PubMed ID: 25362325
    [Abstract] [Full Text] [Related]

  • 6. Thermodynamic anomaly of the sub-T(g) relaxation in hyperquenched metallic glasses.
    Hu L, Zhou C, Zhang C, Yue Y.
    J Chem Phys; 2013 May 07; 138(17):174508. PubMed ID: 23656145
    [Abstract] [Full Text] [Related]

  • 7. Clarifying the glass-transition behaviour of water by comparison with hyperquenched inorganic glasses.
    Yue Y, Angell CA.
    Nature; 2004 Feb 19; 427(6976):717-20. PubMed ID: 14973480
    [Abstract] [Full Text] [Related]

  • 8. Formation of glasses from liquids and biopolymers.
    Angell CA.
    Science; 1995 Mar 31; 267(5206):1924-35. PubMed ID: 17770101
    [Abstract] [Full Text] [Related]

  • 9. Dynamics of supercooled water in confined geometry.
    Bergman R, Swenson J.
    Nature; 2000 Jan 20; 403(6767):283-6. PubMed ID: 10659841
    [Abstract] [Full Text] [Related]

  • 10. Beating crystallization in glass-forming metals by millisecond heating and processing.
    Johnson WL, Kaltenboeck G, Demetriou MD, Schramm JP, Liu X, Samwer K, Kim CP, Hofmann DC.
    Science; 2011 May 13; 332(6031):828-33. PubMed ID: 21566189
    [Abstract] [Full Text] [Related]

  • 11. Structural instability of metallic glasses under radio-frequency-ultrasonic perturbation and its correlation with glass-to-crystal transition of less-stable metallic glasses.
    Ichitsubo T, Matsubara E, Chen HS, Saida J, Yamamoto T, Nishiyama N.
    J Chem Phys; 2006 Oct 21; 125(15):154502. PubMed ID: 17059267
    [Abstract] [Full Text] [Related]

  • 12. Configuration correlation governs slow dynamics of supercooled metallic liquids.
    Hu YC, Li YW, Yang Y, Guan PF, Bai HY, Wang WH.
    Proc Natl Acad Sci U S A; 2018 Jun 19; 115(25):6375-6380. PubMed ID: 29866833
    [Abstract] [Full Text] [Related]

  • 13. Signatures of fragile-to-strong transition in a binary metallic glass-forming liquid.
    Lad KN, Jakse N, Pasturel A.
    J Chem Phys; 2012 Mar 14; 136(10):104509. PubMed ID: 22423850
    [Abstract] [Full Text] [Related]

  • 14. Asymmetric crystallization during cooling and heating in model glass-forming systems.
    Wang M, Zhang K, Li Z, Liu Y, Schroers J, Shattuck MD, O'Hern CS.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar 14; 91(3):032309. PubMed ID: 25871112
    [Abstract] [Full Text] [Related]

  • 15. Observation of an isothermal glass transition in metallic glasses.
    Sun YT, Ding DW, Lu Z, Li MZ, Liu YH, Wang WH.
    J Chem Phys; 2024 Jan 28; 160(4):. PubMed ID: 38258930
    [Abstract] [Full Text] [Related]

  • 16. Beating Homogeneous Nucleation and Tuning Atomic Ordering in Glass-Forming Metals by Nanocalorimetry.
    Zhao B, Yang B, Abyzov AS, Schmelzer JWP, Rodríguez-Viejo J, Zhai Q, Schick C, Gao Y.
    Nano Lett; 2017 Dec 13; 17(12):7751-7760. PubMed ID: 29111758
    [Abstract] [Full Text] [Related]

  • 17. Correlation between glass-forming ability and fragility of pharmaceutical compounds.
    Kawakami K, Harada T, Yoshihashi Y, Yonemochi E, Terada K, Moriyama H.
    J Phys Chem B; 2015 Apr 09; 119(14):4873-80. PubMed ID: 25781503
    [Abstract] [Full Text] [Related]

  • 18. Computational studies of the glass-forming ability of model bulk metallic glasses.
    Zhang K, Wang M, Papanikolaou S, Liu Y, Schroers J, Shattuck MD, O'Hern CS.
    J Chem Phys; 2013 Sep 28; 139(12):124503. PubMed ID: 24089782
    [Abstract] [Full Text] [Related]

  • 19. Linking rigidity transitions with enthalpic changes at the glass transition and fragility: insight from a simple oscillator model.
    Micoulaut M.
    J Phys Condens Matter; 2010 Jul 21; 22(28):285101. PubMed ID: 21399290
    [Abstract] [Full Text] [Related]

  • 20. Thermodynamic signature of the dynamic glass transition in hard spheres.
    Hermes M, Dijkstra M.
    J Phys Condens Matter; 2010 Mar 17; 22(10):104114. PubMed ID: 21389448
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.