These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


393 related items for PubMed ID: 25137914

  • 21. [Optical coherence tomography (OCT) in glaucoma diagnostics].
    Hoffmann EM.
    Klin Monbl Augenheilkd; 2012 Feb; 229(2):135-42. PubMed ID: 22334411
    [Abstract] [Full Text] [Related]

  • 22. Quantitative thickness measurement of retinal layers imaged by optical coherence tomography.
    Shahidi M, Wang Z, Zelkha R.
    Am J Ophthalmol; 2005 Jun; 139(6):1056-61. PubMed ID: 15953436
    [Abstract] [Full Text] [Related]

  • 23. Optical coherence tomography in imaging of macular diseases.
    Figurska M, Robaszkiewicz J, Wierzbowska J.
    Klin Oczna; 2010 Jun; 112(4-6):138-46. PubMed ID: 20825070
    [Abstract] [Full Text] [Related]

  • 24. FloatingCanvas: quantification of 3D retinal structures from spectral-domain optical coherence tomography.
    Zhu H, Crabb DP, Schlottmann PG, Ho T, Garway-Heath DF.
    Opt Express; 2010 Nov 22; 18(24):24595-610. PubMed ID: 21164806
    [Abstract] [Full Text] [Related]

  • 25. Hand-held spectral domain optical coherence tomography finding in shaken-baby syndrome.
    Muni RH, Kohly RP, Sohn EH, Lee TC.
    Retina; 2010 Apr 22; 30(4 Suppl):S45-50. PubMed ID: 20386092
    [Abstract] [Full Text] [Related]

  • 26. Imaging the infant retina with a hand-held spectral-domain optical coherence tomography device.
    Scott AW, Farsiu S, Enyedi LB, Wallace DK, Toth CA.
    Am J Ophthalmol; 2009 Feb 22; 147(2):364-373.e2. PubMed ID: 18848317
    [Abstract] [Full Text] [Related]

  • 27. Spectral-domain optical coherence tomography: a comparison of modern high-resolution retinal imaging systems.
    Kiernan DF, Mieler WF, Hariprasad SM.
    Am J Ophthalmol; 2010 Jan 22; 149(1):18-31. PubMed ID: 20103039
    [Abstract] [Full Text] [Related]

  • 28. Monitoring mouse retinal degeneration with high-resolution spectral-domain optical coherence tomography.
    Kim KH, Puoris'haag M, Maguluri GN, Umino Y, Cusato K, Barlow RB, de Boer JF.
    J Vis; 2008 Jan 24; 8(1):17.1-11. PubMed ID: 18318620
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. [Optical coherence tomography, an important new tool in the investigation of the retina].
    Bijlsma WR, Stilma JS.
    Ned Tijdschr Geneeskd; 2005 Aug 20; 149(34):1884-91. PubMed ID: 16136741
    [Abstract] [Full Text] [Related]

  • 32. Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator.
    Fernández EJ, Povazay B, Hermann B, Unterhuber A, Sattmann H, Prieto PM, Leitgeb R, Ahnelt P, Artal P, Drexler W.
    Vision Res; 2005 Dec 20; 45(28):3432-44. PubMed ID: 16249013
    [Abstract] [Full Text] [Related]

  • 33. Quantitative analysis of retinal structures using spectral domain optical coherence tomography in normal rabbits.
    Alkin Z, Kashani AH, López-Jaime GR, Ruiz García H, Humayun MS, Sadda SR.
    Curr Eye Res; 2013 Feb 20; 38(2):299-304. PubMed ID: 23373715
    [Abstract] [Full Text] [Related]

  • 34. Comparison of manually corrected retinal thickness measurements from multiple spectral-domain optical coherence tomography instruments.
    Heussen FM, Ouyang Y, McDonnell EC, Narala R, Ruiz-Garcia H, Walsh AC, Sadda SR.
    Br J Ophthalmol; 2012 Mar 20; 96(3):380-5. PubMed ID: 21733920
    [Abstract] [Full Text] [Related]

  • 35. Three-dimensional high-speed optical coherence tomography imaging of lamina cribrosa in glaucoma.
    Inoue R, Hangai M, Kotera Y, Nakanishi H, Mori S, Morishita S, Yoshimura N.
    Ophthalmology; 2009 Feb 20; 116(2):214-22. PubMed ID: 19091413
    [Abstract] [Full Text] [Related]

  • 36. Recent developments in optical coherence tomography for imaging the retina.
    van Velthoven ME, Faber DJ, Verbraak FD, van Leeuwen TG, de Smet MD.
    Prog Retin Eye Res; 2007 Jan 20; 26(1):57-77. PubMed ID: 17158086
    [Abstract] [Full Text] [Related]

  • 37. Retinal structure of birds of prey revealed by ultra-high resolution spectral-domain optical coherence tomography.
    Ruggeri M, Major JC, McKeown C, Knighton RW, Puliafito CA, Jiao S.
    Invest Ophthalmol Vis Sci; 2010 Nov 20; 51(11):5789-95. PubMed ID: 20554605
    [Abstract] [Full Text] [Related]

  • 38. Use of a combined slit-lamp SD-OCT to obtain anterior and posterior segment images in selected animal species.
    Rosolen SG, Rivière ML, Lavillegrand S, Gautier B, Picaud S, LeGargasson JF.
    Vet Ophthalmol; 2012 Sep 20; 15 Suppl 2():105-15. PubMed ID: 22616780
    [Abstract] [Full Text] [Related]

  • 39. Ocular fundus reference images from optical coherence tomography.
    Guimarães P, Rodrigues P, Lobo C, Leal S, Figueira J, Serranho P, Bernardes R.
    Comput Med Imaging Graph; 2014 Jul 20; 38(5):381-9. PubMed ID: 24631317
    [Abstract] [Full Text] [Related]

  • 40. Retinal imaging by laser polarimetry and optical coherence tomography evidence of axonal degeneration in multiple sclerosis.
    Zaveri MS, Conger A, Salter A, Frohman TC, Galetta SL, Markowitz CE, Jacobs DA, Cutter GR, Ying GS, Maguire MG, Calabresi PA, Balcer LJ, Frohman EM.
    Arch Neurol; 2008 Jul 20; 65(7):924-8. PubMed ID: 18625859
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 20.