These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


140 related items for PubMed ID: 25147245

  • 21. Acclimation to hypoxia increases carbohydrate use during exercise in high-altitude deer mice.
    Lau DS, Connaty AD, Mahalingam S, Wall N, Cheviron ZA, Storz JF, Scott GR, McClelland GB.
    Am J Physiol Regul Integr Comp Physiol; 2017 Mar 01; 312(3):R400-R411. PubMed ID: 28077391
    [Abstract] [Full Text] [Related]

  • 22. The Mitochondrial Basis for Adaptive Variation in Aerobic Performance in High-Altitude Deer Mice.
    Scott GR, Guo KH, Dawson NJ.
    Integr Comp Biol; 2018 Sep 01; 58(3):506-518. PubMed ID: 29873740
    [Abstract] [Full Text] [Related]

  • 23. Phenotypic plasticity in blood-oxygen transport in highland and lowland deer mice.
    Tufts DM, Revsbech IG, Cheviron ZA, Weber RE, Fago A, Storz JF.
    J Exp Biol; 2013 Apr 01; 216(Pt 7):1167-73. PubMed ID: 23239893
    [Abstract] [Full Text] [Related]

  • 24. Transcriptomic plasticity in brown adipose tissue contributes to an enhanced capacity for nonshivering thermogenesis in deer mice.
    Velotta JP, Jones J, Wolf CJ, Cheviron ZA.
    Mol Ecol; 2016 Jun 01; 25(12):2870-86. PubMed ID: 27126783
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Thermogenesis is supported by high rates of circulatory fatty acid and triglyceride delivery in highland deer mice.
    Lyons SA, McClelland GB.
    J Exp Biol; 2022 Jun 15; 225(12):. PubMed ID: 35552735
    [Abstract] [Full Text] [Related]

  • 28. Function of left ventricle mitochondria in highland deer mice and lowland mice.
    Mahalingam S, Coulson SZ, Scott GR, McClelland GB.
    J Comp Physiol B; 2023 Mar 15; 193(2):207-217. PubMed ID: 36795175
    [Abstract] [Full Text] [Related]

  • 29. Evolved changes in phenotype across skeletal muscles in deer mice native to high altitude.
    Garrett EJ, Prasad SK, Schweizer RM, McClelland GB, Scott GR.
    Am J Physiol Regul Integr Comp Physiol; 2024 Apr 01; 326(4):R297-R310. PubMed ID: 38372126
    [Abstract] [Full Text] [Related]

  • 30. Contributions of phenotypic plasticity to differences in thermogenic performance between highland and lowland deer mice.
    Cheviron ZA, Bachman GC, Storz JF.
    J Exp Biol; 2013 Apr 01; 216(Pt 7):1160-6. PubMed ID: 23197099
    [Abstract] [Full Text] [Related]

  • 31. Regulation of muscle pyruvate dehydrogenase activity and fuel use during exercise in high-altitude deer mice.
    Coulson SZ, Lyons SA, Robertson CE, Fabello B, Dessureault LM, McClelland GB.
    J Exp Biol; 2024 Aug 15; 227(16):. PubMed ID: 39054898
    [Abstract] [Full Text] [Related]

  • 32. Evolution and developmental plasticity of lung structure in high-altitude deer mice.
    West CM, Ivy CM, Husnudinov R, Scott GR.
    J Comp Physiol B; 2021 Mar 15; 191(2):385-396. PubMed ID: 33533958
    [Abstract] [Full Text] [Related]

  • 33. Chronic cold exposure induces mitochondrial plasticity in deer mice native to high altitudes.
    Mahalingam S, Cheviron ZA, Storz JF, McClelland GB, Scott GR.
    J Physiol; 2020 Dec 15; 598(23):5411-5426. PubMed ID: 32886797
    [Abstract] [Full Text] [Related]

  • 34. Regulatory changes contribute to the adaptive enhancement of thermogenic capacity in high-altitude deer mice.
    Cheviron ZA, Bachman GC, Connaty AD, McClelland GB, Storz JF.
    Proc Natl Acad Sci U S A; 2012 May 29; 109(22):8635-40. PubMed ID: 22586089
    [Abstract] [Full Text] [Related]

  • 35. Local adaptation, plasticity, and evolved resistance to hypoxic cold stress in high-altitude deer mice.
    Bautista NM, Herrera ND, Shadowitz E, Wearing OH, Cheviron ZA, Scott GR, Storz JF.
    Proc Natl Acad Sci U S A; 2024 Oct 08; 121(41):e2412526121. PubMed ID: 39352929
    [Abstract] [Full Text] [Related]

  • 36. Training high--living low: changes of aerobic performance and muscle structure with training at simulated altitude.
    Geiser J, Vogt M, Billeter R, Zuleger C, Belforti F, Hoppeler H.
    Int J Sports Med; 2001 Nov 08; 22(8):579-85. PubMed ID: 11719893
    [Abstract] [Full Text] [Related]

  • 37. Developmental delay in shivering limits thermogenic capacity in juvenile high-altitude deer mice (Peromyscus maniculatus).
    Robertson CE, McClelland GB.
    J Exp Biol; 2019 Oct 31; 222(Pt 21):. PubMed ID: 31562187
    [Abstract] [Full Text] [Related]

  • 38. Contribution of shivering and nonshivering thermogenesis to thermogenic capacity for the deer mouse (Peromyscus maniculatus).
    Van Sant MJ, Hammond KA.
    Physiol Biochem Zool; 2008 Oct 31; 81(5):605-11. PubMed ID: 18729765
    [Abstract] [Full Text] [Related]

  • 39. Effects of chronic hypoxia on diaphragm function in deer mice native to high altitude.
    Dawson NJ, Lyons SA, Henry DA, Scott GR.
    Acta Physiol (Oxf); 2018 May 31; 223(1):e13030. PubMed ID: 29316265
    [Abstract] [Full Text] [Related]

  • 40. Effects of ambient temperature and altitude on ventilation and gas exchange in deer mice (Peromyscus maniculatus).
    Chappell MA.
    J Comp Physiol B; 1985 May 31; 155(6):751-8. PubMed ID: 3837039
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.