These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


114 related items for PubMed ID: 2515071

  • 21. [Interactions of fats and proteins in meat. 3. Changes in tryptophan content and available forms of lysine, methionine and cystine].
    Janitz W.
    Z Ernahrungswiss; 1988 Jun; 27(2):109-18. PubMed ID: 3144810
    [Abstract] [Full Text] [Related]

  • 22. Pyrolysis mass spectra, sulfhydryl and tryptophan content of the embryonic nuclei from adult human normal and nuclear-cataractous lenses.
    van Haard PM, Hoenders HJ, Wollensak J, Haverkamp J.
    Biochim Biophys Acta; 1980 Aug 01; 631(1):177-87. PubMed ID: 7397244
    [Abstract] [Full Text] [Related]

  • 23. Alpha-crystallin can act as a chaperone under conditions of oxidative stress.
    Wang K, Spector A.
    Invest Ophthalmol Vis Sci; 1995 Feb 01; 36(2):311-21. PubMed ID: 7843902
    [Abstract] [Full Text] [Related]

  • 24. Senile cataract: the influence of blood factors on lens and serum sulfhydryl oxidation.
    Testa M, Bocci N, Fiore C, Calabrò S.
    Exp Eye Res; 1969 Oct 01; 8(4):447-60. PubMed ID: 5358241
    [No Abstract] [Full Text] [Related]

  • 25. Effects of near -UV irradiation on lens and aqueous humor proteins.
    Zigman S, Schultz JB, Yulo T, Grover D.
    Isr J Med Sci; 1972 Oct 01; 8(8):1590-5. PubMed ID: 4647825
    [No Abstract] [Full Text] [Related]

  • 26. Glycation-induced crosslinking of calf lens crystallins.
    van Boekel MA, Hoenders HJ.
    Exp Eye Res; 1991 Jul 01; 53(1):89-94. PubMed ID: 1879506
    [Abstract] [Full Text] [Related]

  • 27. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products.
    Saxena P, Saxena AK, Cui XL, Obrenovich M, Gudipaty K, Monnier VM.
    Invest Ophthalmol Vis Sci; 2000 May 01; 41(6):1473-81. PubMed ID: 10798665
    [Abstract] [Full Text] [Related]

  • 28. Nonenzymatic modification of lens crystallins by prednisolone induces sulfhydryl oxidation and aggregate formation: in vitro and in vivo studies.
    Bucala R, Manabe S, Urban RC, Cerami A.
    Exp Eye Res; 1985 Sep 01; 41(3):353-63. PubMed ID: 4065253
    [Abstract] [Full Text] [Related]

  • 29. Availability of protein amino groups in senile nuclear cataract.
    Truscott RJ.
    Ophthalmic Res; 1983 Sep 01; 15(1):38-41. PubMed ID: 6406954
    [Abstract] [Full Text] [Related]

  • 30. Oxidative stress to lens crystallins.
    Jahngen-Hodge J, Taylor A, Shang F, Huang LL, Mura C.
    Methods Enzymol; 1994 Sep 01; 233():512-22. PubMed ID: 8015487
    [No Abstract] [Full Text] [Related]

  • 31. [Senile cataract: influence of serum factors on the oxidation of sulfhydryl groups in the crystalline lens and serum].
    Testa M, Bocci N, Fiore C, Calabro' S.
    Ann Ottalmol Clin Ocul; 1968 Aug 01; 94(8):873-92. PubMed ID: 5733611
    [No Abstract] [Full Text] [Related]

  • 32. Comparison between modifications of lens proteins resulted from glycation with methylglyoxal, glyoxal, ascorbic acid, and fructose.
    Argirova M, Breipohl W.
    J Biochem Mol Toxicol; 2002 Aug 01; 16(3):140-5. PubMed ID: 12112714
    [Abstract] [Full Text] [Related]

  • 33. One-shot LC-MS/MS analysis of post-translational modifications including oxidation and deamidation of rat lens α- and β-crystallins induced by γ-irradiation.
    Kim I, Saito T, Fujii N, Kanamoto T, Fujii N.
    Amino Acids; 2016 Dec 01; 48(12):2855-2866. PubMed ID: 27600614
    [Abstract] [Full Text] [Related]

  • 34. Non-oxidative modification of lens crystallins by kynurenine: a novel post-translational protein modification with possible relevance to ageing and cataract.
    Garner B, Shaw DC, Lindner RA, Carver JA, Truscott RJ.
    Biochim Biophys Acta; 2000 Feb 09; 1476(2):265-78. PubMed ID: 10669791
    [Abstract] [Full Text] [Related]

  • 35. Degradation of crystallins from a psoriatic patient undergoing PUVA therapy.
    Sa e Melo T, Cirne de Castro J, Ribeiro L, Conte J, Lawrence D, Bazin M, Santus R.
    FEBS Lett; 1990 Jul 30; 268(1):72-4. PubMed ID: 2384175
    [Abstract] [Full Text] [Related]

  • 36. Protein oxidation and lens opacity in humans.
    Boscia F, Grattagliano I, Vendemiale G, Micelli-Ferrari T, Altomare E.
    Invest Ophthalmol Vis Sci; 2000 Aug 30; 41(9):2461-5. PubMed ID: 10937554
    [Abstract] [Full Text] [Related]

  • 37. Effect of the oxidation of sulfhydryl groups on lens proteins.
    Testa M, Fiore C, Bocci N, Calabrò S.
    Exp Eye Res; 1968 Apr 30; 7(2):276-90. PubMed ID: 5646618
    [No Abstract] [Full Text] [Related]

  • 38. Identification of tryptophan oxidation products in bovine alpha-crystallin.
    Finley EL, Dillon J, Crouch RK, Schey KL.
    Protein Sci; 1998 Nov 30; 7(11):2391-7. PubMed ID: 9828005
    [Abstract] [Full Text] [Related]

  • 39. Ascorbic acid-induced crosslinking of lens proteins: evidence supporting a Maillard reaction.
    Ortwerth BJ, Olesen PR.
    Biochim Biophys Acta; 1988 Aug 31; 956(1):10-22. PubMed ID: 3408736
    [Abstract] [Full Text] [Related]

  • 40. Oxidative modification of lens crystallins by H2O2 and chelated iron.
    Zigler JS, Huang QL, Du XY.
    Free Radic Biol Med; 1989 Aug 31; 7(5):499-505. PubMed ID: 2558979
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.