These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


400 related items for PubMed ID: 25152532

  • 1. Testing the heat-invariant and cold-variability tolerance hypotheses across geographic gradients.
    Bozinovic F, Orellana MJ, Martel SI, Bogdanovich JM.
    Comp Biochem Physiol A Mol Integr Physiol; 2014 Dec; 178():46-50. PubMed ID: 25152532
    [Abstract] [Full Text] [Related]

  • 2. Thermal tolerance patterns across latitude and elevation.
    Sunday J, Bennett JM, Calosi P, Clusella-Trullas S, Gravel S, Hargreaves AL, Leiva FP, Verberk WCEP, Olalla-Tárraga MÁ, Morales-Castilla I.
    Philos Trans R Soc Lond B Biol Sci; 2019 Aug 05; 374(1778):20190036. PubMed ID: 31203755
    [Abstract] [Full Text] [Related]

  • 3. Interpopulational variation in recovery time from chill coma along a geographic gradient: a study in the common woodlouse, Porcellio laevis.
    Castañeda LE, Lardies MA, Bozinovic F.
    J Insect Physiol; 2005 Dec 05; 51(12):1346-51. PubMed ID: 16197957
    [Abstract] [Full Text] [Related]

  • 4. Hypoxia causes woodlice (Porcellio scaber) to select lower temperatures and impairs their thermal performance and heat tolerance.
    Antoł A, Rojek W, Singh S, Piekarski D, Czarnoleski M.
    PLoS One; 2019 Dec 05; 14(8):e0220647. PubMed ID: 31369635
    [Abstract] [Full Text] [Related]

  • 5. Intraspecific variation in thermal tolerance and acclimation capacity in brook trout (Salvelinus fontinalis): physiological implications for climate change.
    Stitt BC, Burness G, Burgomaster KA, Currie S, McDermid JL, Wilson CC.
    Physiol Biochem Zool; 2014 Dec 05; 87(1):15-29. PubMed ID: 24457918
    [Abstract] [Full Text] [Related]

  • 6. Heat freezes niche evolution.
    Araújo MB, Ferri-Yáñez F, Bozinovic F, Marquet PA, Valladares F, Chown SL.
    Ecol Lett; 2013 Sep 05; 16(9):1206-19. PubMed ID: 23869696
    [Abstract] [Full Text] [Related]

  • 7. Global variation in the thermal tolerances of plants.
    Lancaster LT, Humphreys AM.
    Proc Natl Acad Sci U S A; 2020 Jun 16; 117(24):13580-13587. PubMed ID: 32482870
    [Abstract] [Full Text] [Related]

  • 8. No trade-off between high and low temperature tolerance in a winter acclimatized Danish Drosophila subobscura population.
    Sørensen JG, Kristensen TN, Loeschcke V, Schou MF.
    J Insect Physiol; 2015 Jun 16; 77():9-14. PubMed ID: 25846012
    [Abstract] [Full Text] [Related]

  • 9. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species.
    Overgaard J, Kearney MR, Hoffmann AA.
    Glob Chang Biol; 2014 Jun 16; 20(6):1738-50. PubMed ID: 24549716
    [Abstract] [Full Text] [Related]

  • 10. Conserved and narrow temperature limits in alpine insects: Thermal tolerance and supercooling points of the ice-crawlers, Grylloblatta (Insecta: Grylloblattodea: Grylloblattidae).
    Schoville SD, Slatyer RA, Bergdahl JC, Valdez GA.
    J Insect Physiol; 2015 Jul 16; 78():55-61. PubMed ID: 25956197
    [Abstract] [Full Text] [Related]

  • 11. Gross mismatch between thermal tolerances and environmental temperatures in a tropical freshwater snail: climate warming and evolutionary implications.
    Polgar G, Khang TF, Chua T, Marshall DJ.
    J Therm Biol; 2015 Jan 16; 47():99-108. PubMed ID: 25526660
    [Abstract] [Full Text] [Related]

  • 12. Altitudinal variation in bumble bee (Bombus) critical thermal limits.
    Oyen KJ, Giri S, Dillon ME.
    J Therm Biol; 2016 Jul 16; 59():52-7. PubMed ID: 27264888
    [Abstract] [Full Text] [Related]

  • 13. Thermal tolerance and survival responses to scenarios of experimental climatic change: changing thermal variability reduces the heat and cold tolerance in a fly.
    Bozinovic F, Medina NR, Alruiz JM, Cavieres G, Sabat P.
    J Comp Physiol B; 2016 Jul 16; 186(5):581-7. PubMed ID: 27003422
    [Abstract] [Full Text] [Related]

  • 14. Heat tolerance in Drosophila subobscura along a latitudinal gradient: Contrasting patterns between plastic and genetic responses.
    Castañeda LE, Rezende EL, Santos M.
    Evolution; 2015 Oct 16; 69(10):2721-34. PubMed ID: 26292981
    [Abstract] [Full Text] [Related]

  • 15. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming.
    Gunderson AR, Stillman JH.
    Proc Biol Sci; 2015 Jun 07; 282(1808):20150401. PubMed ID: 25994676
    [Abstract] [Full Text] [Related]

  • 16. Potential for thermal tolerance to mediate climate change effects on three members of a cool temperate lizard genus, Niveoscincus.
    Caldwell AJ, While GM, Beeton NJ, Wapstra E.
    J Therm Biol; 2015 Aug 07; 52():14-23. PubMed ID: 26267494
    [Abstract] [Full Text] [Related]

  • 17. Reversibility of developmental heat and cold plasticity is asymmetric and has long-lasting consequences for adult thermal tolerance.
    Slotsbo S, Schou MF, Kristensen TN, Loeschcke V, Sørensen JG.
    J Exp Biol; 2016 Sep 01; 219(Pt 17):2726-32. PubMed ID: 27353229
    [Abstract] [Full Text] [Related]

  • 18. Thermal tolerance, climatic variability and latitude.
    Addo-Bediako A, Chown SL, Gaston KJ.
    Proc Biol Sci; 2000 Apr 22; 267(1445):739-45. PubMed ID: 10819141
    [Abstract] [Full Text] [Related]

  • 19. Latitudinal clines in heat tolerance, protein synthesis rate and transcript level of a candidate gene in Drosophila melanogaster.
    Cockerell FE, Sgrò CM, McKechnie SW.
    J Insect Physiol; 2014 Jan 22; 60():136-44. PubMed ID: 24333150
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.