These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


164 related items for PubMed ID: 25157551

  • 1. A low-rank matrix recovery approach for energy efficient EEG acquisition for a wireless body area network.
    Majumdar A, Gogna A, Ward R.
    Sensors (Basel); 2014 Aug 25; 14(9):15729-48. PubMed ID: 25157551
    [Abstract] [Full Text] [Related]

  • 2. An Inflatable and Wearable Wireless System for Making 32-Channel Electroencephalogram Measurements.
    Yu YH, Lu SW, Chuang CH, King JT, Chang CL, Chen SA, Chen SF, Lin CT.
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jul 25; 24(7):806-13. PubMed ID: 26780814
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Energy efficient acquisition and reconstruction of EEG signals.
    Singh W, Shukla A, Deb S, Majumdar A.
    Annu Int Conf IEEE Eng Med Biol Soc; 2014 Jul 25; 2014():1274-7. PubMed ID: 25570198
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Deadline-aware energy-efficient query scheduling in Wireless Sensor Networks with mobile sink.
    Karakaya M.
    ScientificWorldJournal; 2013 Jul 25; 2013():834653. PubMed ID: 23818833
    [Abstract] [Full Text] [Related]

  • 7. On the MAC/network/energy performance evaluation of Wireless Sensor Networks: Contrasting MPH, AODV, DSR and ZTR routing protocols.
    Del-Valle-Soto C, Mex-Perera C, Orozco-Lugo A, Lara M, Galván-Tejada GM, Olmedo O.
    Sensors (Basel); 2014 Dec 02; 14(12):22811-47. PubMed ID: 25474377
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. A wireless transmission neural interface system for unconstrained non-human primates.
    Fernandez-Leon JA, Parajuli A, Franklin R, Sorenson M, Felleman DJ, Hansen BJ, Hu M, Dragoi V.
    J Neural Eng; 2015 Oct 02; 12(5):056005. PubMed ID: 26269496
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. An energy efficient compressed sensing framework for the compression of electroencephalogram signals.
    Fauvel S, Ward RK.
    Sensors (Basel); 2014 Jan 15; 14(1):1474-96. PubMed ID: 24434840
    [Abstract] [Full Text] [Related]

  • 14. Compressed sensing of EEG for wireless telemonitoring with low energy consumption and inexpensive hardware.
    Zhang Z, Jung TP, Makeig S, Rao BD.
    IEEE Trans Biomed Eng; 2013 Jan 15; 60(1):221-4. PubMed ID: 22968206
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Coexistence of ZigBee-Based WBAN and WiFi for Health Telemonitoring Systems.
    Kim Y, Lee S, Lee S.
    IEEE J Biomed Health Inform; 2016 Jan 15; 20(1):222-30. PubMed ID: 25576586
    [Abstract] [Full Text] [Related]

  • 18. A very low power MAC (VLPM) protocol for Wireless Body Area Networks.
    Ullah N, Khan P, Kwak KS.
    Sensors (Basel); 2011 Jan 15; 11(4):3717-37. PubMed ID: 22163818
    [Abstract] [Full Text] [Related]

  • 19. Energy-efficient process-stacking multiplexing access for 60-GHz mm-wave wireless personal area networks.
    Estevez C, Kailas A.
    Annu Int Conf IEEE Eng Med Biol Soc; 2012 Jan 15; 2012():2084-7. PubMed ID: 23366331
    [Abstract] [Full Text] [Related]

  • 20. Low-power wireless ECG acquisition and classification system for body sensor networks.
    Lee SY, Hong JH, Hsieh CH, Liang MC, Chang Chien SY, Lin KH.
    IEEE J Biomed Health Inform; 2015 Jan 15; 19(1):236-46. PubMed ID: 25561446
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.