These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
162 related items for PubMed ID: 25162914
1. His166 is the Schiff base proton acceptor in attractant phototaxis receptor sensory rhodopsin I. Sasaki J, Takahashi H, Furutani Y, Sineshchekov OA, Spudich JL, Kandori H. Biochemistry; 2014 Sep 23; 53(37):5923-9. PubMed ID: 25162914 [Abstract] [Full Text] [Related]
2. His166 is critical for active-site proton transfer and phototaxis signaling by sensory rhodopsin I. Zhang XN, Spudich JL. Biophys J; 1997 Sep 23; 73(3):1516-23. PubMed ID: 9284318 [Abstract] [Full Text] [Related]
3. A Schiff base connectivity switch in sensory rhodopsin signaling. Sineshchekov OA, Sasaki J, Phillips BJ, Spudich JL. Proc Natl Acad Sci U S A; 2008 Oct 21; 105(42):16159-64. PubMed ID: 18852467 [Abstract] [Full Text] [Related]
4. FTIR analysis of the SII540 intermediate of sensory rhodopsin II: Asp73 is the Schiff base proton acceptor. Bergo V, Spudich EN, Scott KL, Spudich JL, Rothschild KJ. Biochemistry; 2000 Mar 21; 39(11):2823-30. PubMed ID: 10715101 [Abstract] [Full Text] [Related]
5. Structural changes of sensory rhodopsin I and its transducer protein are dependent on the protonated state of Asp76. Furutani Y, Takahashi H, Sasaki J, Sudo Y, Spudich JL, Kandori H. Biochemistry; 2008 Mar 04; 47(9):2875-83. PubMed ID: 18220358 [Abstract] [Full Text] [Related]
6. Protonatable residues at the cytoplasmic end of transmembrane helix-2 in the signal transducer HtrI control photochemistry and function of sensory rhodopsin I. Jung KH, Spudich JL. Proc Natl Acad Sci U S A; 1996 Jun 25; 93(13):6557-61. PubMed ID: 8692855 [Abstract] [Full Text] [Related]
7. Signal relay from sensory rhodopsin I to the cognate transducer HtrI: assessing the critical change in hydrogen-bonding between Tyr-210 and Asn-53. Radu I, Budyak IL, Hoomann T, Kim YJ, Engelhard M, Labahn J, Büldt G, Heberle J, Schlesinger R. Biophys Chem; 2010 Aug 25; 150(1-3):23-8. PubMed ID: 20303644 [Abstract] [Full Text] [Related]
9. Attractant and repellent signaling conformers of sensory rhodopsin-transducer complexes. Sineshchekov OA, Sasaki J, Wang J, Spudich JL. Biochemistry; 2010 Aug 10; 49(31):6696-704. PubMed ID: 20590098 [Abstract] [Full Text] [Related]
10. Constitutive signaling by the phototaxis receptor sensory rhodopsin II from disruption of its protonated Schiff base-Asp-73 interhelical salt bridge. Spudich EN, Zhang W, Alam M, Spudich JL. Proc Natl Acad Sci U S A; 1997 May 13; 94(10):4960-5. PubMed ID: 9144172 [Abstract] [Full Text] [Related]
11. Residue replacements of buried aspartyl and related residues in sensory rhodopsin I: D201N produces inverted phototaxis signals. Olson KD, Zhang XN, Spudich JL. Proc Natl Acad Sci U S A; 1995 Apr 11; 92(8):3185-9. PubMed ID: 7724537 [Abstract] [Full Text] [Related]
12. HtrI is a dimer whose interface is sensitive to receptor photoactivation and His-166 replacements in sensory rhodopsin I. Zhang XN, Spudich JL. J Biol Chem; 1998 Jul 31; 273(31):19722-8. PubMed ID: 9677402 [Abstract] [Full Text] [Related]
13. Key determinants for signaling in the sensory rhodopsin II/transducer complex are different between Halobacterium salinarum and Natronomonas pharaonis. Matsunami-Nakamura R, Tamogami J, Takeguchi M, Ishikawa J, Kikukawa T, Kamo N, Nara T. FEBS Lett; 2023 Sep 31; 597(18):2334-2344. PubMed ID: 37532685 [Abstract] [Full Text] [Related]
14. Functional importance of the interhelical hydrogen bond between Thr204 and Tyr174 of sensory rhodopsin II and its alteration during the signaling process. Sudo Y, Furutani Y, Kandori H, Spudich JL. J Biol Chem; 2006 Nov 10; 281(45):34239-45. PubMed ID: 16968701 [Abstract] [Full Text] [Related]
15. Structural changes of Salinibacter sensory rhodopsin I upon formation of the K and M photointermediates. Suzuki D, Sudo Y, Furutani Y, Takahashi H, Homma M, Kandori H. Biochemistry; 2008 Dec 02; 47(48):12750-9. PubMed ID: 18991393 [Abstract] [Full Text] [Related]
16. Suppressor mutation analysis of the sensory rhodopsin I-transducer complex: insights into the color-sensing mechanism. Jung KH, Spudich JL. J Bacteriol; 1998 Apr 02; 180(8):2033-42. PubMed ID: 9555883 [Abstract] [Full Text] [Related]
17. Transducer-binding and transducer-mutations modulate photoactive-site-deprotonation in sensory rhodopsin I. Jung KH, Spudich EN, Dag P, Spudich JL. Biochemistry; 1999 Oct 05; 38(40):13270-4. PubMed ID: 10529200 [Abstract] [Full Text] [Related]
18. Asp76 is the Schiff base counterion and proton acceptor in the proton-translocating form of sensory rhodopsin I. Rath P, Spudich E, Neal DD, Spudich JL, Rothschild KJ. Biochemistry; 1996 May 28; 35(21):6690-6. PubMed ID: 8639619 [Abstract] [Full Text] [Related]
19. Proton circulation during the photocycle of sensory rhodopsin II. Sasaki J, Spudich JL. Biophys J; 1999 Oct 28; 77(4):2145-52. PubMed ID: 10512834 [Abstract] [Full Text] [Related]
20. FT-IR difference spectroscopy elucidates crucial interactions of sensory rhodopsin I with the cognate transducer HtrI. Mironova OS, Budyak IL, Büldt G, Schlesinger R, Heberle J. Biochemistry; 2007 Aug 21; 46(33):9399-405. PubMed ID: 17655327 [Abstract] [Full Text] [Related] Page: [Next] [New Search]