These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


119 related items for PubMed ID: 2518395

  • 21. Limited role for nitric oxide in mediating cerebrovascular control of newborn piglets.
    Patel J, Pryds O, Roberts I, Harris D, Edwards AD.
    Arch Dis Child Fetal Neonatal Ed; 1996 Sep; 75(2):F82-6. PubMed ID: 8949688
    [Abstract] [Full Text] [Related]

  • 22. The acute effect of captopril on cerebral blood flow, its CO2 reactivity, and cerebral oxygen metabolism in human volunteers.
    Schmidt JF, Waldemar G, Paulson OB.
    J Cardiovasc Pharmacol; 1990 Dec; 16(6):1007-10. PubMed ID: 1704975
    [Abstract] [Full Text] [Related]

  • 23. Controlled transient hypercapnia: a novel approach for the treatment of delayed cerebral ischemia after subarachnoid hemorrhage?
    Westermaier T, Stetter C, Kunze E, Willner N, Holzmeier J, Kilgenstein C, Lee JY, Ernestus RI, Roewer N, Muellenbach RM.
    J Neurosurg; 2014 Nov; 121(5):1056-62. PubMed ID: 25148012
    [Abstract] [Full Text] [Related]

  • 24. Cerebral blood flow decreases with time whereas cerebral oxygen consumption remains stable during hypothermic cardiopulmonary bypass in humans.
    Prough DS, Rogers AT, Stump DA, Roy RC, Cordell AR, Phipps J, Taylor CL.
    Anesth Analg; 1991 Feb; 72(2):161-8. PubMed ID: 1898686
    [Abstract] [Full Text] [Related]

  • 25. Impaired chemical coupling of cerebral blood flow is compatible with intact neurological outcome in neonates with perinatal risk factors.
    Baenziger O, Moenkhoff M, Morales CG, Waldvogel K, Wolf M, Bucher H, Fanconi S.
    Biol Neonate; 1999 Feb; 75(1):9-17. PubMed ID: 9831679
    [Abstract] [Full Text] [Related]

  • 26. Response of cerebral blood flow to changes in carbon dioxide tension during hypothermic cardiopulmonary bypass.
    Prough DS, Stump DA, Roy RC, Gravlee GP, Williams T, Mills SA, Hinshelwood L, Howard G.
    Anesthesiology; 1986 May; 64(5):576-81. PubMed ID: 3083727
    [Abstract] [Full Text] [Related]

  • 27. Accounting for arterial and capillary blood gases for calculation of cerebral blood flow in preterm infants.
    Brodkorb S, Sidorenko I, Turova V, Rieger-Fackeldey E, Felderhoff-Müser U, Kovtanyuk A, Lampe R.
    Eur J Pediatr; 2022 May; 181(5):2087-2096. PubMed ID: 35150310
    [Abstract] [Full Text] [Related]

  • 28. Changes in cerebral oxygenation and cerebral blood volume during endotracheal suctioning in ventilated neonates.
    Skov L, Ryding J, Pryds O, Greisen G.
    Acta Paediatr; 1992 May; 81(5):389-93. PubMed ID: 1498503
    [Abstract] [Full Text] [Related]

  • 29. Mainstream end-tidal carbon dioxide monitoring in ventilated neonates.
    Bhat YR, Abhishek N.
    Singapore Med J; 2008 Mar; 49(3):199-203. PubMed ID: 18363000
    [Abstract] [Full Text] [Related]

  • 30. Effects of clonidine on cerebral blood flow and the response to arterial CO2.
    Kanawati IS, Yaksh TL, Anderson RE, Marsh RW.
    J Cereb Blood Flow Metab; 1986 Jun; 6(3):358-65. PubMed ID: 3011828
    [Abstract] [Full Text] [Related]

  • 31. Cerebral tissue oxygenation index in very premature infants.
    Naulaers G, Morren G, Van Huffel S, Casaer P, Devlieger H.
    Arch Dis Child Fetal Neonatal Ed; 2002 Nov; 87(3):F189-92. PubMed ID: 12390989
    [Abstract] [Full Text] [Related]

  • 32. Carbon Dioxide Fluctuations Are Associated with Changes in Cerebral Oxygenation and Electrical Activity in Infants Born Preterm.
    Dix LML, Weeke LC, de Vries LS, Groenendaal F, Baerts W, van Bel F, Lemmers PMA.
    J Pediatr; 2017 Aug; 187():66-72.e1. PubMed ID: 28578157
    [Abstract] [Full Text] [Related]

  • 33. End tidal carbon dioxide monitoring--its reliability in neonates.
    Nangia S, Saili A, Dutta AK.
    Indian J Pediatr; 1997 Aug; 64(3):389-94. PubMed ID: 10771861
    [Abstract] [Full Text] [Related]

  • 34. [Effects of sodium bicarbonate on the end-tidal CO2,PaCO2, HCO3-, PH and cerebral blood flow].
    Komatani A, Akutsu T, Yoshida M, Yamaguchi K, Seo H.
    Kaku Igaku; 1992 Sep; 29(9):1107-12. PubMed ID: 1333542
    [Abstract] [Full Text] [Related]

  • 35. Changes in cardiac function and cerebral blood flow in relation to peri/intraventricular hemorrhage in extremely preterm infants.
    Noori S, McCoy M, Anderson MP, Ramji F, Seri I.
    J Pediatr; 2014 Feb; 164(2):264-70.e1-3. PubMed ID: 24183212
    [Abstract] [Full Text] [Related]

  • 36. Cerebral oxygenation and cerebral oxygen extraction in the preterm infant: the impact of respiratory distress syndrome.
    Lemmers PM, Toet M, van Schelven LJ, van Bel F.
    Exp Brain Res; 2006 Aug; 173(3):458-67. PubMed ID: 16506004
    [Abstract] [Full Text] [Related]

  • 37. Cerebrovascular carbon dioxide reactivity and failure of autoregulation in preterm infants.
    Fenton AC, Woods KL, Evans DH, Levene MI.
    Arch Dis Child; 1992 Jul; 67(7 Spec No):835-9. PubMed ID: 1519985
    [Abstract] [Full Text] [Related]

  • 38. Brain luxury perfusion during cardiopulmonary bypass in humans. A study of the cerebral blood flow response to changes in CO2, O2, and blood pressure.
    Henriksen L.
    J Cereb Blood Flow Metab; 1986 Jun; 6(3):366-78. PubMed ID: 3086331
    [Abstract] [Full Text] [Related]

  • 39. Cerebral blood flow reactivity to changes in carbon dioxide calculated using end-tidal versus arterial tensions.
    Young WL, Prohovnik I, Ornstein E, Ostapkovich N, Matteo RS.
    J Cereb Blood Flow Metab; 1991 Nov; 11(6):1031-5. PubMed ID: 1939381
    [Abstract] [Full Text] [Related]

  • 40. Renal blood flow velocity in non-distressed preterm infants during the first 72 hours of life.
    van de Bor M.
    Biol Neonate; 1995 Nov; 67(5):346-51. PubMed ID: 7662814
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.