These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
313 related items for PubMed ID: 25189685
1. Sulfate migration in a river affected by acid mine drainage from the Dabaoshan mining area, South China. Chen M, Lu G, Guo C, Yang C, Wu J, Huang W, Yee N, Dang Z. Chemosphere; 2015 Jan; 119():734-743. PubMed ID: 25189685 [Abstract] [Full Text] [Related]
2. Hydrogeochemical and mineralogical characteristics related to heavy metal attenuation in a stream polluted by acid mine drainage: a case study in Dabaoshan Mine, China. Zhao H, Xia B, Qin J, Zhang J. J Environ Sci (China); 2012 Jan; 24(6):979-89. PubMed ID: 23505864 [Abstract] [Full Text] [Related]
3. Geochemical behavior of an acid drainage system: the case of the Amarillo River, Famatina (La Rioja, Argentina). Lecomte KL, Maza SN, Collo G, Sarmiento AM, Depetris PJ. Environ Sci Pollut Res Int; 2017 Jan; 24(2):1630-1647. PubMed ID: 27796971 [Abstract] [Full Text] [Related]
4. Acidity and metallic elements release from AMD-affected river sediments: Effect of AMD standstill and dilution. Chen M, Lu G, Wu J, Sun J, Yang C, Xie Y, Wang K, Deng F, Yi X, Dang Z. Environ Res; 2020 Jul; 186():109490. PubMed ID: 32302871 [Abstract] [Full Text] [Related]
5. Characteristics and environmental response of secondary minerals in AMD from Dabaoshan Mine, South China. Liu Q, Chen B, Haderlein S, Gopalakrishnan G, Zhou Y. Ecotoxicol Environ Saf; 2018 Jul 15; 155():50-58. PubMed ID: 29501982 [Abstract] [Full Text] [Related]
6. Mineralogical characteristics of sediments and heavy metal mobilization along a river watershed affected by acid mine drainage. Xie Y, Lu G, Yang C, Qu L, Chen M, Guo C, Dang Z. PLoS One; 2018 Jul 15; 13(1):e0190010. PubMed ID: 29304091 [Abstract] [Full Text] [Related]
7. Using δ34S-SO4 and δ18O-SO4 to trace the sources of sulfate in different types of surface water from the Linhuan coal-mining subsidence area of Huaibei, China. Zheng L, Chen X, Dong X, Wei X, Jiang C, Tang Q. Ecotoxicol Environ Saf; 2019 Oct 15; 181():231-240. PubMed ID: 31195232 [Abstract] [Full Text] [Related]
8. Migration and fate of metallic elements in a waste mud impoundment and affected river downstream: A case study in Dabaoshan Mine, South China. Chen M, Lu G, Wu J, Yang C, Niu X, Tao X, Shi Z, Yi X, Dang Z. Ecotoxicol Environ Saf; 2018 Nov 30; 164():474-483. PubMed ID: 30144708 [Abstract] [Full Text] [Related]
10. Distribution and migration of antimony and other trace elements in a Karstic river system, Southwest China. Li L, Liu H, Li H. Environ Sci Pollut Res Int; 2018 Oct 30; 25(28):28061-28074. PubMed ID: 30066079 [Abstract] [Full Text] [Related]
11. Role of microbial activity in Fe(III) hydroxysulfate mineral transformations in an acid mine drainage-impacted site from the Dabaoshan Mine. Bao Y, Guo C, Lu G, Yi X, Wang H, Dang Z. Sci Total Environ; 2018 Mar 30; 616-617():647-657. PubMed ID: 29103647 [Abstract] [Full Text] [Related]
12. Mobility and natural attenuation of metals and arsenic in acidic waters of the drainage system of Timok River from Bor copper mines (Serbia) to Danube River. Đorđievski S, Ishiyama D, Ogawa Y, Stevanović Z. Environ Sci Pollut Res Int; 2018 Sep 30; 25(25):25005-25019. PubMed ID: 29934829 [Abstract] [Full Text] [Related]
13. Speciation and precipitation of heavy metals in high-metal and high-acid mine waters from the Iberian Pyrite Belt (Portugal). Durães N, Bobos I, da Silva EF. Environ Sci Pollut Res Int; 2017 Feb 30; 24(5):4562-4576. PubMed ID: 27957691 [Abstract] [Full Text] [Related]
14. Sources and mixing of sulfate contamination in the water environment of a typical coal mining city, China: evidence from stable isotope characteristics. Chen X, Zheng L, Dong X, Jiang C, Wei X. Environ Geochem Health; 2020 Sep 30; 42(9):2865-2879. PubMed ID: 32026272 [Abstract] [Full Text] [Related]
15. Hydrogeochemical features of surface water and groundwater contaminated with acid mine drainage (AMD) in coal mining areas: a case study in southern Brazil. Galhardi JA, Bonotto DM. Environ Sci Pollut Res Int; 2016 Sep 30; 23(18):18911-27. PubMed ID: 27335014 [Abstract] [Full Text] [Related]
16. Environmental and socioeconomic assessment of impacts by mining activities-a case study in the Certej River catchment, Western Carpathians, Romania. Zobrist J, Sima M, Dogaru D, Senila M, Yang H, Popescu C, Roman C, Bela A, Frei L, Dold B, Balteanu D. Environ Sci Pollut Res Int; 2009 Aug 30; 16 Suppl 1():S14-26. PubMed ID: 19159960 [Abstract] [Full Text] [Related]
17. Geochemical behaviors of antimony in mining-affected water environment (Southwest China). Li L, Tu H, Zhang S, Wu L, Wu M, Tang Y, Wu P. Environ Geochem Health; 2019 Dec 30; 41(6):2397-2411. PubMed ID: 30972516 [Abstract] [Full Text] [Related]
18. Antimony in the soil-water-plant system at the Su Suergiu abandoned mine (Sardinia, Italy): strategies to mitigate contamination. Cidu R, Biddau R, Dore E, Vacca A, Marini L. Sci Total Environ; 2014 Nov 01; 497-498():319-331. PubMed ID: 25137381 [Abstract] [Full Text] [Related]
19. Changes in acidity and metal geochemistry in soils, groundwater, drain and river water in the Lower Murray River after a severe drought. Mosley LM, Fitzpatrick RW, Palmer D, Leyden E, Shand P. Sci Total Environ; 2014 Jul 01; 485-486():281-291. PubMed ID: 24727046 [Abstract] [Full Text] [Related]
20. Investigation of mineralogical and bacteria diversity in Nanxi River affected by acid mine drainage from the closed coal mine: Implications for characterizing natural attenuation process. He J, Li W, Liu J, Chen S, Frost RL. Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun 15; 217():263-270. PubMed ID: 30947135 [Abstract] [Full Text] [Related] Page: [Next] [New Search]