These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


416 related items for PubMed ID: 25190398

  • 1. Spatial hearing benefits demonstrated with presentation of acoustic temporal fine structure cues in bilateral cochlear implant listeners.
    Churchill TH, Kan A, Goupell MJ, Litovsky RY.
    J Acoust Soc Am; 2014 Sep; 136(3):1246. PubMed ID: 25190398
    [Abstract] [Full Text] [Related]

  • 2. Binaural cue sensitivity in cochlear implant recipients with acoustic hearing preservation.
    Gifford RH, Stecker GC.
    Hear Res; 2020 May; 390():107929. PubMed ID: 32182551
    [Abstract] [Full Text] [Related]

  • 3. Extent of lateralization at large interaural time differences in simulated electric hearing and bilateral cochlear implant users.
    Baumgärtel RM, Hu H, Kollmeier B, Dietz M.
    J Acoust Soc Am; 2017 Apr; 141(4):2338. PubMed ID: 28464641
    [Abstract] [Full Text] [Related]

  • 4. Electric and acoustic harmonic integration predicts speech-in-noise performance in hybrid cochlear implant users.
    Bonnard D, Schwalje A, Gantz B, Choi I.
    Hear Res; 2018 Sep; 367():223-230. PubMed ID: 29980380
    [Abstract] [Full Text] [Related]

  • 5. Differences in the temporal course of interaural time difference sensitivity between acoustic and electric hearing in amplitude modulated stimuli.
    Hu H, Ewert SD, McAlpine D, Dietz M.
    J Acoust Soc Am; 2017 Mar; 141(3):1862. PubMed ID: 28372072
    [Abstract] [Full Text] [Related]

  • 6. Sensitivity to interaural level and envelope time differences of two bilateral cochlear implant listeners using clinical sound processors.
    Laback B, Pok SM, Baumgartner WD, Deutsch WA, Schmid K.
    Ear Hear; 2004 Oct; 25(5):488-500. PubMed ID: 15599195
    [Abstract] [Full Text] [Related]

  • 7. Perception and coding of interaural time differences with bilateral cochlear implants.
    Laback B, Egger K, Majdak P.
    Hear Res; 2015 Apr; 322():138-50. PubMed ID: 25456088
    [Abstract] [Full Text] [Related]

  • 8. Objective measure of binaural processing: Acoustic change complex in response to interaural phase differences.
    Fan Y, Gifford RH.
    Hear Res; 2024 Jul; 448():109020. PubMed ID: 38763034
    [Abstract] [Full Text] [Related]

  • 9. Binaural hearing in children using Gaussian enveloped and transposed tones.
    Ehlers E, Kan A, Winn MB, Stoelb C, Litovsky RY.
    J Acoust Soc Am; 2016 Apr; 139(4):1724. PubMed ID: 27106319
    [Abstract] [Full Text] [Related]

  • 10. Binaural sensitivity in children who use bilateral cochlear implants.
    Ehlers E, Goupell MJ, Zheng Y, Godar SP, Litovsky RY.
    J Acoust Soc Am; 2017 Jun; 141(6):4264. PubMed ID: 28618809
    [Abstract] [Full Text] [Related]

  • 11. Sensitivity of bilateral cochlear implant users to fine-structure and envelope interaural time differences.
    Noel VA, Eddington DK.
    J Acoust Soc Am; 2013 Apr; 133(4):2314-28. PubMed ID: 23556598
    [Abstract] [Full Text] [Related]

  • 12. Effects of Monaural Temporal Electrode Asynchrony and Channel Interactions in Bilateral and Unilateral Cochlear-Implant Stimulation.
    Lindenbeck MJ, Majdak P, Laback B.
    Trends Hear; 2024 Apr; 28():23312165241271340. PubMed ID: 39215517
    [Abstract] [Full Text] [Related]

  • 13. Head shadow enhancement with low-frequency beamforming improves sound localization and speech perception for simulated bimodal listeners.
    Dieudonné B, Francart T.
    Hear Res; 2018 Jun; 363():78-84. PubMed ID: 29555110
    [Abstract] [Full Text] [Related]

  • 14. Masking release with changing fundamental frequency: Electric acoustic stimulation resembles normal hearing subjects.
    Auinger AB, Riss D, Liepins R, Rader T, Keck T, Keintzel T, Kaider A, Baumgartner WD, Gstoettner W, Arnoldner C.
    Hear Res; 2017 Jul; 350():226-234. PubMed ID: 28527538
    [Abstract] [Full Text] [Related]

  • 15. Bilateral Versus Unilateral Cochlear Implantation in Adult Listeners: Speech-On-Speech Masking and Multitalker Localization.
    Rana B, Buchholz JM, Morgan C, Sharma M, Weller T, Konganda SA, Shirai K, Kawano A.
    Trends Hear; 2017 Jul; 21():2331216517722106. PubMed ID: 28752811
    [Abstract] [Full Text] [Related]

  • 16. Precedence based speech segregation in bilateral cochlear implant users.
    Hossain S, Montazeri V, Assmann PF, Litovsky RY.
    J Acoust Soc Am; 2015 Dec; 138(6):EL545-50. PubMed ID: 26723365
    [Abstract] [Full Text] [Related]

  • 17. Effect of mismatched place-of-stimulation on binaural fusion and lateralization in bilateral cochlear-implant users.
    Kan A, Stoelb C, Litovsky RY, Goupell MJ.
    J Acoust Soc Am; 2013 Oct; 134(4):2923-36. PubMed ID: 24116428
    [Abstract] [Full Text] [Related]

  • 18. A physiologically-inspired model reproducing the speech intelligibility benefit in cochlear implant listeners with residual acoustic hearing.
    Zamaninezhad L, Hohmann V, Büchner A, Schädler MR, Jürgens T.
    Hear Res; 2017 Feb; 344():50-61. PubMed ID: 27838372
    [Abstract] [Full Text] [Related]

  • 19. Rate and onset cues can improve cochlear implant synthetic vowel recognition in noise.
    Mc Laughlin M, Reilly RB, Zeng FG.
    J Acoust Soc Am; 2013 Mar; 133(3):1546-60. PubMed ID: 23464025
    [Abstract] [Full Text] [Related]

  • 20. Reweighting of Binaural Localization Cues in Bilateral Cochlear-Implant Listeners.
    Klingel M, Laback B.
    J Assoc Res Otolaryngol; 2022 Feb; 23(1):119-136. PubMed ID: 34812980
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.