These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
332 related items for PubMed ID: 25192742
1. SignalSpider: probabilistic pattern discovery on multiple normalized ChIP-Seq signal profiles. Wong KC, Li Y, Peng C, Zhang Z. Bioinformatics; 2015 Jan 01; 31(1):17-24. PubMed ID: 25192742 [Abstract] [Full Text] [Related]
2. Probabilistic Inference on Multiple Normalized Signal Profiles from Next Generation Sequencing: Transcription Factor Binding Sites. Wong KC, Peng C, Li Y. IEEE/ACM Trans Comput Biol Bioinform; 2015 Jan 01; 12(6):1416-28. PubMed ID: 26671811 [Abstract] [Full Text] [Related]
3. iTAR: a web server for identifying target genes of transcription factors using ChIP-seq or ChIP-chip data. Yang CC, Andrews EH, Chen MH, Wang WY, Chen JJ, Gerstein M, Liu CC, Cheng C. BMC Genomics; 2016 Aug 12; 17(1):632. PubMed ID: 27519564 [Abstract] [Full Text] [Related]
4. A novel statistical method for quantitative comparison of multiple ChIP-seq datasets. Chen L, Wang C, Qin ZS, Wu H. Bioinformatics; 2015 Jun 15; 31(12):1889-96. PubMed ID: 25682068 [Abstract] [Full Text] [Related]
5. Using combined evidence from replicates to evaluate ChIP-seq peaks. Jalili V, Matteucci M, Masseroli M, Morelli MJ. Bioinformatics; 2015 Sep 01; 31(17):2761-9. PubMed ID: 25957351 [Abstract] [Full Text] [Related]
6. Seten: a tool for systematic identification and comparison of processes, phenotypes, and diseases associated with RNA-binding proteins from condition-specific CLIP-seq profiles. Budak G, Srivastava R, Janga SC. RNA; 2017 Jun 01; 23(6):836-846. PubMed ID: 28336542 [Abstract] [Full Text] [Related]
7. Chromatin analyses of Zymoseptoria tritici: Methods for chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq). Soyer JL, Möller M, Schotanus K, Connolly LR, Galazka JM, Freitag M, Stukenbrock EH. Fungal Genet Biol; 2015 Jun 01; 79():63-70. PubMed ID: 25857259 [Abstract] [Full Text] [Related]
9. ChIPulate: A comprehensive ChIP-seq simulation pipeline. Datta V, Hannenhalli S, Siddharthan R. PLoS Comput Biol; 2019 Mar 01; 15(3):e1006921. PubMed ID: 30897079 [Abstract] [Full Text] [Related]
10. Application of topic models to a compendium of ChIP-Seq datasets uncovers recurrent transcriptional regulatory modules. Yang G, Ma A, Qin ZS, Chen L. Bioinformatics; 2020 Apr 15; 36(8):2352-2358. PubMed ID: 31899481 [Abstract] [Full Text] [Related]
12. ChIP-BIT: Bayesian inference of target genes using a novel joint probabilistic model of ChIP-seq profiles. Chen X, Jung JG, Shajahan-Haq AN, Clarke R, Shih IeM, Wang Y, Magnani L, Wang TL, Xuan J. Nucleic Acids Res; 2016 Apr 20; 44(7):e65. PubMed ID: 26704972 [Abstract] [Full Text] [Related]
13. De novo prediction of cis-regulatory elements and modules through integrative analysis of a large number of ChIP datasets. Niu M, Tabari ES, Su Z. BMC Genomics; 2014 Dec 02; 15():1047. PubMed ID: 25442502 [Abstract] [Full Text] [Related]
14. Identification of Candidate Functional Elements in the Genome from ChIP-seq Data. Marinov GK. Methods Mol Biol; 2017 Dec 02; 1543():19-43. PubMed ID: 28349420 [Abstract] [Full Text] [Related]