These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


508 related items for PubMed ID: 25194430

  • 1. A Brassica napus PHT1 phosphate transporter, BnPht1;4, promotes phosphate uptake and affects roots architecture of transgenic Arabidopsis.
    Ren F, Zhao CZ, Liu CS, Huang KL, Guo QQ, Chang LL, Xiong H, Li XB.
    Plant Mol Biol; 2014 Dec; 86(6):595-607. PubMed ID: 25194430
    [Abstract] [Full Text] [Related]

  • 2. Brassica napus PHR1 gene encoding a MYB-like protein functions in response to phosphate starvation.
    Ren F, Guo QQ, Chang LL, Chen L, Zhao CZ, Zhong H, Li XB.
    PLoS One; 2012 Dec; 7(8):e44005. PubMed ID: 22952851
    [Abstract] [Full Text] [Related]

  • 3. The high-affinity transporter BnPHT1;4 is involved in phosphorus acquisition and mobilization for facilitating seed germination and early seedling growth of Brassica napus.
    Huang KL, Wang H, Wei YL, Jia HX, Zha L, Zheng Y, Ren F, Li XB.
    BMC Plant Biol; 2019 Apr 25; 19(1):156. PubMed ID: 31023216
    [Abstract] [Full Text] [Related]

  • 4. Molecular identification of the phosphate transporter family 1 (PHT1) genes and their expression profiles in response to phosphorus deprivation and other abiotic stresses in Brassica napus.
    Li Y, Wang X, Zhang H, Wang S, Ye X, Shi L, Xu F, Ding G.
    PLoS One; 2019 Apr 25; 14(7):e0220374. PubMed ID: 31344115
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Modulation of the Phosphate-Deficient Responses by MicroRNA156 and its Targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 3 in Arabidopsis.
    Lei KJ, Lin YM, Ren J, Bai L, Miao YC, An GY, Song CP.
    Plant Cell Physiol; 2016 Jan 25; 57(1):192-203. PubMed ID: 26647245
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. WRKY42 modulates phosphate homeostasis through regulating phosphate translocation and acquisition in Arabidopsis.
    Su T, Xu Q, Zhang FC, Chen Y, Li LQ, Wu WH, Chen YF.
    Plant Physiol; 2015 Apr 25; 167(4):1579-91. PubMed ID: 25733771
    [Abstract] [Full Text] [Related]

  • 11. Global Survey and Expressions of the Phosphate Transporter Gene Families in Brassica napus and Their Roles in Phosphorus Response.
    Yang J, Zhou J, Zhou HJ, Wang MM, Liu MM, Ke YZ, Li PF, Li JN, Du H.
    Int J Mol Sci; 2020 Mar 04; 21(5):. PubMed ID: 32143436
    [Abstract] [Full Text] [Related]

  • 12. Characterization of the AtSPX3 Promoter Elucidates its Complex Regulation in Response to Phosphorus Deficiency.
    Li Y, Wu H, Fan H, Zhao T, Ling HQ.
    Plant Cell Physiol; 2016 Aug 04; 57(8):1767-78. PubMed ID: 27382128
    [Abstract] [Full Text] [Related]

  • 13. OsMYB2P-1, an R2R3 MYB transcription factor, is involved in the regulation of phosphate-starvation responses and root architecture in rice.
    Dai X, Wang Y, Yang A, Zhang WH.
    Plant Physiol; 2012 May 04; 159(1):169-83. PubMed ID: 22395576
    [Abstract] [Full Text] [Related]

  • 14. Genome-Wide Dissection of the CRF Gene Family in Brassica napus Indicates that BnaCRF8s Specifically Regulate Root Architecture and Phosphate Homeostasis against Phosphate Fluctuation in Plants.
    Wang S, Zhang H, Shi L, Xu F, Ding G.
    Int J Mol Sci; 2020 May 22; 21(10):. PubMed ID: 32455955
    [Abstract] [Full Text] [Related]

  • 15. A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis.
    Bustos R, Castrillo G, Linhares F, Puga MI, Rubio V, Pérez-Pérez J, Solano R, Leyva A, Paz-Ares J.
    PLoS Genet; 2010 Sep 09; 6(9):e1001102. PubMed ID: 20838596
    [Abstract] [Full Text] [Related]

  • 16. A constitutive expressed phosphate transporter, OsPht1;1, modulates phosphate uptake and translocation in phosphate-replete rice.
    Sun S, Gu M, Cao Y, Huang X, Zhang X, Ai P, Zhao J, Fan X, Xu G.
    Plant Physiol; 2012 Aug 09; 159(4):1571-81. PubMed ID: 22649273
    [Abstract] [Full Text] [Related]

  • 17. The ARF7 and ARF19 Transcription Factors Positively Regulate PHOSPHATE STARVATION RESPONSE1 in Arabidopsis Roots.
    Huang KL, Ma GJ, Zhang ML, Xiong H, Wu H, Zhao CZ, Liu CS, Jia HX, Chen L, Kjorven JO, Li XB, Ren F.
    Plant Physiol; 2018 Sep 09; 178(1):413-427. PubMed ID: 30026290
    [Abstract] [Full Text] [Related]

  • 18. Increased phosphate transport of Arabidopsis thaliana Pht1;1 by site-directed mutagenesis of tyrosine 312 may be attributed to the disruption of homomeric interactions.
    Fontenot EB, Ditusa SF, Kato N, Olivier DM, Dale R, Lin WY, Chiou TJ, Macnaughtan MA, Smith AP.
    Plant Cell Environ; 2015 Oct 09; 38(10):2012-22. PubMed ID: 25754174
    [Abstract] [Full Text] [Related]

  • 19. Arabidopsis Pht1;5 mobilizes phosphate between source and sink organs and influences the interaction between phosphate homeostasis and ethylene signaling.
    Nagarajan VK, Jain A, Poling MD, Lewis AJ, Raghothama KG, Smith AP.
    Plant Physiol; 2011 Jul 09; 156(3):1149-63. PubMed ID: 21628630
    [Abstract] [Full Text] [Related]

  • 20. BOTRYTIS-INDUCED KINASE1, a plasma membrane-localized receptor-like protein kinase, is a negative regulator of phosphate homeostasis in Arabidopsis thaliana.
    Zhang H, Huang L, Hong Y, Song F.
    BMC Plant Biol; 2016 Jul 07; 16(1):152. PubMed ID: 27389008
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 26.