These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
180 related items for PubMed ID: 25201393
1. Fabrication of hydroxyapatite thin films on zirconia using a sputtering technique. Ozeki K, Goto T, Aoki H, Masuzawa T. Biomed Mater Eng; 2014; 24(5):1793-802. PubMed ID: 25201393 [Abstract] [Full Text] [Related]
2. Characterization of Sr-substituted hydroxyapatite thin film by sputtering technique from mixture targets of hydroxyapatite and strontium apatite. Ozeki K, Goto T, Aoki H, Masuzawa T. Biomed Mater Eng; 2014; 24(2):1447-56. PubMed ID: 24642972 [Abstract] [Full Text] [Related]
3. Influence of the crystallinity of a sputtered hydroxyapatite film on its osteocompatibility. Ozeki K, Goto T, Aoki H, Masuzawa T. Biomed Mater Eng; 2015; 26(3-4):139-47. PubMed ID: 26684886 [Abstract] [Full Text] [Related]
4. Fabrication of hydroxyapatite thin films on polyetheretherketone substrates using a sputtering technique. Ozeki K, Masuzawa T, Aoki H. Mater Sci Eng C Mater Biol Appl; 2017 Mar 01; 72():576-582. PubMed ID: 28024624 [Abstract] [Full Text] [Related]
5. Adhesion, proliferation and differentiation of osteoblasts on zirconia films prepared by cathodic arc deposition. Zhang S, Sun J, Xu Y, Qian S, Wang B, Liu F, Liu X. Biomed Mater Eng; 2013 Mar 01; 23(5):373-85. PubMed ID: 23988709 [Abstract] [Full Text] [Related]
6. Characterization of a hydroxyapatite sputtered film subject to hydrothermal treatment using FE-SEM and STEM. Ozeki K, Aoki H, Masuzawa T. Biomed Mater Eng; 2011 Mar 01; 21(3):179-89. PubMed ID: 22072082 [Abstract] [Full Text] [Related]
7. Dissolution behavior and in vitro evaluation of sputtered hydroxyapatite films subject to a low temperature hydrothermal treatment. Ozeki K, Aoki H, Fukui Y. J Biomed Mater Res A; 2006 Mar 01; 76(3):605-13. PubMed ID: 16278871 [Abstract] [Full Text] [Related]
8. Study of laser created ZRO2 and hydroxyapatite/ZrO2 films for implantology. Jelínek M, Dostálová T, Teuberová Z, Seydlová M, Masínová P, Kocourek T, Mróz W, Prokopiuk A, Smetana K. Biomol Eng; 2007 Feb 01; 24(1):103-6. PubMed ID: 16839809 [Abstract] [Full Text] [Related]
9. Bone bonding strength of sputtered hydroxyapatite films subjected to a low temperature hydrothermal treatment. Ozeki K, Mishima A, Yuhta T, Fukui Y, Aoki H. Biomed Mater Eng; 2003 Feb 01; 13(4):451-63. PubMed ID: 14646059 [Abstract] [Full Text] [Related]
11. Bond strength, compositional, and structural properties of hydroxyapatite coating on Ti, ZrO2-coated Ti, and TPS-coated Ti substrate. Yang Y, Ong JL. J Biomed Mater Res A; 2003 Mar 01; 64(3):509-16. PubMed ID: 12579565 [Abstract] [Full Text] [Related]
12. Osteoblast proliferation on hydroxyapatite thin coatings produced by right angle magnetron sputtering. Mello A, Hong Z, Rossi AM, Luan L, Farina M, Querido W, Eon J, Terra J, Balasundaram G, Webster T, Feinerman A, Ellis DE, Ketterson JB, Ferreira CL. Biomed Mater; 2007 Jun 01; 2(2):67-77. PubMed ID: 18458438 [Abstract] [Full Text] [Related]
13. Microstructure, bioactivity and osteoblast behavior of monoclinic zirconia coating with nanostructured surface. Wang G, Meng F, Ding C, Chu PK, Liu X. Acta Biomater; 2010 Mar 01; 6(3):990-1000. PubMed ID: 19800425 [Abstract] [Full Text] [Related]
15. Plasma-electrochemical deposition of porous zirconia on titanium-based dental material and in vitro interactions with primary osteoblasts cells. Kaluđerović MR, Schreckenbach JP, Graf HL. J Biomater Appl; 2016 Jan 01; 30(6):711-21. PubMed ID: 25887215 [Abstract] [Full Text] [Related]
16. Zirconium-based metallic glass and zirconia coatings to inhibit bone formation on titanium. Rajan ST, V V AT, Terada-Nakaishi M, Chen P, Hanawa T, Nandakumar AK, Subramanian B. Biomed Mater; 2020 Oct 13; 15(6):065019. PubMed ID: 32615545 [Abstract] [Full Text] [Related]