These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1057 related items for PubMed ID: 25201446

  • 1. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode.
    Hao P, Zhao Z, Tian J, Li H, Sang Y, Yu G, Cai H, Liu H, Wong CP, Umar A.
    Nanoscale; 2014 Oct 21; 6(20):12120-9. PubMed ID: 25201446
    [Abstract] [Full Text] [Related]

  • 2. The hybrid nanostructure of MnCo2O4.5 nanoneedle/carbon aerogel for symmetric supercapacitors with high energy density.
    Hao P, Zhao Z, Li L, Tuan CC, Li H, Sang Y, Jiang H, Wong CP, Liu H.
    Nanoscale; 2015 Sep 14; 7(34):14401-12. PubMed ID: 26248645
    [Abstract] [Full Text] [Related]

  • 3. Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores.
    Kim T, Jung G, Yoo S, Suh KS, Ruoff RS.
    ACS Nano; 2013 Aug 27; 7(8):6899-905. PubMed ID: 23829569
    [Abstract] [Full Text] [Related]

  • 4. Cellulose carbon aerogel/PPy composites for high-performance supercapacitor.
    Zhuo H, Hu Y, Chen Z, Zhong L.
    Carbohydr Polym; 2019 Jul 01; 215():322-329. PubMed ID: 30981361
    [Abstract] [Full Text] [Related]

  • 5. Mesoporous CoO nanocubes @ continuous 3D porous carbon skeleton of rose-based electrode for high-performance supercapacitor.
    Lan D, Chen Y, Chen P, Chen X, Wu X, Pu X, Zeng Y, Zhu Z.
    ACS Appl Mater Interfaces; 2014 Aug 13; 6(15):11839-45. PubMed ID: 25068550
    [Abstract] [Full Text] [Related]

  • 6. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors.
    Zheng Q, Cai Z, Ma Z, Gong S.
    ACS Appl Mater Interfaces; 2015 Feb 11; 7(5):3263-71. PubMed ID: 25625769
    [Abstract] [Full Text] [Related]

  • 7. Hierarchical porous carbons from polysaccharides carboxymethyl cellulose, bacterial cellulose, and citric acid for supercapacitor.
    Shu Y, Bai Q, Fu G, Xiong Q, Li C, Ding H, Shen Y, Uyama H.
    Carbohydr Polym; 2020 Jan 01; 227():115346. PubMed ID: 31590873
    [Abstract] [Full Text] [Related]

  • 8. 1D Ni-Co oxide and sulfide nanoarray/carbon aerogel hybrid nanostructures for asymmetric supercapacitors with high energy density and excellent cycling stability.
    Hao P, Tian J, Sang Y, Tuan CC, Cui G, Shi X, Wong CP, Tang B, Liu H.
    Nanoscale; 2016 Sep 15; 8(36):16292-16301. PubMed ID: 27714086
    [Abstract] [Full Text] [Related]

  • 9. 3D hierarchical porous carbon matching ionic liquid with ultrahigh specific surface area and appropriate porous distribution for supercapacitors.
    Du Q, Zhao Y, Zhuo K, Chen Y, Yang L, Wang C, Wang J.
    Nanoscale; 2021 Aug 21; 13(31):13285-13293. PubMed ID: 34259289
    [Abstract] [Full Text] [Related]

  • 10. Cellulose nanofiber derived carbon aerogel with 3D multiscale pore architecture for high-performance supercapacitors.
    Chen L, Yu H, Li Z, Chen X, Zhou W.
    Nanoscale; 2021 Nov 04; 13(42):17837-17845. PubMed ID: 34668896
    [Abstract] [Full Text] [Related]

  • 11. Oxygen-rich hierarchical porous carbon derived from artemia cyst shells with superior electrochemical performance.
    Zhao Y, Ran W, He J, Song Y, Zhang C, Xiong DB, Gao F, Wu J, Xia Y.
    ACS Appl Mater Interfaces; 2015 Jan 21; 7(2):1132-9. PubMed ID: 25531022
    [Abstract] [Full Text] [Related]

  • 12. Hierarchical porous carbon sheets derived on a MgO template for high-performance supercapacitor applications.
    Wen Y, Zhang L, Liu J, Wen X, Chen X, Ma J, Tang T, Mijowska E.
    Nanotechnology; 2019 Jul 19; 30(29):295703. PubMed ID: 30861503
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors.
    Hou J, Cao C, Idrees F, Ma X.
    ACS Nano; 2015 Mar 24; 9(3):2556-64. PubMed ID: 25703427
    [Abstract] [Full Text] [Related]

  • 15. Controlled porous structures of graphene aerogels and their effect on supercapacitor performance.
    Jung SM, Mafra DL, Lin CT, Jung HY, Kong J.
    Nanoscale; 2015 Mar 14; 7(10):4386-93. PubMed ID: 25682978
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Highly Porous Willow Wood-Derived Activated Carbon for High-Performance Supercapacitor Electrodes.
    Phiri J, Dou J, Vuorinen T, Gane PAC, Maloney TC.
    ACS Omega; 2019 Nov 05; 4(19):18108-18117. PubMed ID: 31720513
    [Abstract] [Full Text] [Related]

  • 18. Soybean Root-Derived Hierarchical Porous Carbon as Electrode Material for High-Performance Supercapacitors in Ionic Liquids.
    Guo N, Li M, Wang Y, Sun X, Wang F, Yang R.
    ACS Appl Mater Interfaces; 2016 Dec 14; 8(49):33626-33634. PubMed ID: 27960404
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Porous carbon derived from herbal plant waste for supercapacitor electrodes with ultrahigh specific capacitance and excellent energy density.
    Zhang Y, Tang Z.
    Waste Manag; 2020 Apr 01; 106():250-260. PubMed ID: 32240941
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 53.