These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
278 related items for PubMed ID: 25221423
1. Role of FAM18B in diabetic retinopathy. Wang AL, Rao VR, Chen JJ, Lussier YA, Rehman J, Huang Y, Jager RD, Grassi MA. Mol Vis; 2014; 20():1146-59. PubMed ID: 25221423 [Abstract] [Full Text] [Related]
2. Thioredoxin-interacting protein deficiency ameliorates diabetic retinal angiogenesis. Duan J, Du C, Shi Y, Liu D, Ma J. Int J Biochem Cell Biol; 2018 Jan; 94():61-70. PubMed ID: 29203232 [Abstract] [Full Text] [Related]
3. Preliminary research on LncRNA ATP2B2-IT2 in neovascularization of diabetic retinopathy. Yuan Y, Zhu A, Zeng L, Wang X, Zhang Y, Long X, Wu J, Ye M, He J, Tan W. BMC Ophthalmol; 2024 Jun 21; 24(1):267. PubMed ID: 38907191 [Abstract] [Full Text] [Related]
4. Ferroptosis Contributes to Microvascular Dysfunction in Diabetic Retinopathy. Liu Q, Liu CQ, Yi WZ, Ouyang PW, Yang BF, Liu Q, Liu JM, Wu YN, Liang AR, Cui YH, Meng J, Li XY, Pan HW. Am J Pathol; 2024 Jun 21; 194(6):1078-1089. PubMed ID: 38417697 [Abstract] [Full Text] [Related]
5. S100A4 is upregulated in proliferative diabetic retinopathy and correlates with markers of angiogenesis and fibrogenesis. Abu El-Asrar AM, Nawaz MI, De Hertogh G, Alam K, Siddiquei MM, Van den Eynde K, Mousa A, Mohammad G, Geboes K, Opdenakker G. Mol Vis; 2014 Jun 21; 20():1209-24. PubMed ID: 25253987 [Abstract] [Full Text] [Related]
6. Erythropoietin maintains VE-cadherin expression and barrier function in experimental diabetic retinopathy via inhibiting VEGF/VEGFR2/Src signaling pathway. Liu D, Xu H, Zhang C, Xie H, Yang Q, Li W, Tian H, Lu L, Xu JY, Xu G, Liu K, Sun X, Xu GT, Zhang J. Life Sci; 2020 Oct 15; 259():118273. PubMed ID: 32800831 [Abstract] [Full Text] [Related]
7. USP14 Regulates ATF2/PIK3CD Axis to Promote Microvascular Endothelial Cell Proliferation, Migration, and Angiogenesis in Diabetic Retinopathy. He FT, Fu XL, Li MH, Fu CY, Chen JZ. Biochem Genet; 2023 Oct 15; 61(5):2076-2091. PubMed ID: 36939972 [Abstract] [Full Text] [Related]
8. Downregulation of circRNA DMNT3B contributes to diabetic retinal vascular dysfunction through targeting miR-20b-5p and BAMBI. Zhu K, Hu X, Chen H, Li F, Yin N, Liu AL, Shan K, Qin YW, Huang X, Chang Q, Xu GZ, Wang Z. EBioMedicine; 2019 Nov 15; 49():341-353. PubMed ID: 31636010 [Abstract] [Full Text] [Related]
9. Molecular analysis of blood-retinal barrier loss in the Akimba mouse, a model of advanced diabetic retinopathy. Wisniewska-Kruk J, Klaassen I, Vogels IM, Magno AL, Lai CM, Van Noorden CJ, Schlingemann RO, Rakoczy EP. Exp Eye Res; 2014 May 15; 122():123-31. PubMed ID: 24703908 [Abstract] [Full Text] [Related]
10. LncRNA-MALAT1 promotes neovascularization in diabetic retinopathy through regulating miR-125b/VE-cadherin axis. Liu P, Jia SB, Shi JM, Li WJ, Tang LS, Zhu XH, Tong P. Biosci Rep; 2019 May 31; 39(5):. PubMed ID: 30988072 [Abstract] [Full Text] [Related]
11. Genipin relieves diabetic retinopathy by down-regulation of advanced glycation end products via the mitochondrial metabolism related signaling pathway. Sun KX, Chen YY, Li Z, Zheng SJ, Wan WJ, Ji Y, Hu K. World J Diabetes; 2023 Sep 15; 14(9):1349-1368. PubMed ID: 37771331 [Abstract] [Full Text] [Related]
12. Protective effect of pentraxin 3 on pathological retinal angiogenesis in an in vitro model of diabetic retinopathy. Jiang Y, Xing X, Niu T, Wang H, Wang C, Shi X, Liu K, Su L. Arch Biochem Biophys; 2022 Aug 15; 725():109283. PubMed ID: 35577071 [Abstract] [Full Text] [Related]
13. PHD2 attenuates high-glucose-induced blood retinal barrier breakdown in human retinal microvascular endothelial cells by regulating the Hif-1α/VEGF pathway. Li J, Lu X, Wei L, Ye D, Lin J, Tang X, Cui K, Yu S, Xu Y, Liang X. Inflamm Res; 2022 Jan 15; 71(1):69-79. PubMed ID: 34773469 [Abstract] [Full Text] [Related]
14. [Wogonoside alleviates high glucose-induced dysfunction of retinal microvascular endothelial cells and diabetic retinopathy in rats by up-regulating SIRT1]. Shao X, Yu J, Ni W. Nan Fang Yi Ke Da Xue Xue Bao; 2022 Apr 20; 42(4):463-472. PubMed ID: 35527482 [Abstract] [Full Text] [Related]
15. An In Vitro Model of Diabetic Retinal Vascular Endothelial Dysfunction and Neuroretinal Degeneration. Wang Q, Zhang X, Wang K, Zhu L, Qiu B, Chen X, Lin X, Nie Y. J Diabetes Res; 2021 Apr 20; 2021():9765119. PubMed ID: 34805414 [Abstract] [Full Text] [Related]
16. VEGF-B prevents chronic hyperglycemia-induced retinal vascular leakage by regulating the CDC42-ZO1/VE-cadherin pathway. Xu Y, Peng Y, Wu X, Ni F, Sun D, Zhang P, Yang Y, Yan M, Mi J, Tian G. FASEB J; 2024 Sep 15; 38(17):e70019. PubMed ID: 39215561 [Abstract] [Full Text] [Related]
17. Knockdown of Long Non-coding RNA TUG1 Suppresses Migration and Tube Formation in High Glucose-Stimulated Human Retinal Microvascular Endothelial Cells by Sponging miRNA-145. Shi Q, Tang J, Wang M, Xu L, Shi L. Mol Biotechnol; 2022 Feb 15; 64(2):171-177. PubMed ID: 34554391 [Abstract] [Full Text] [Related]
18. Nogo-B Promotes Angiogenesis in Proliferative Diabetic Retinopathy via VEGF/PI3K/Akt Pathway in an Autocrine Manner. Zhang Y, Wang L, Zhang Y, Wang M, Sun Q, Xia F, Wang R, Liu L. Cell Physiol Biochem; 2017 Feb 15; 43(5):1742-1754. PubMed ID: 29049996 [Abstract] [Full Text] [Related]
19. Suppression of protein kinase C-ζ attenuates vascular leakage via prevention of tight junction protein decrease in diabetic retinopathy. Song HB, Jun HO, Kim JH, Yu YS, Kim KW, Kim JH. Biochem Biophys Res Commun; 2014 Jan 31; 444(1):63-8. PubMed ID: 24434146 [Abstract] [Full Text] [Related]
20. Silencing circ_0001879 inhibits the proliferation and migration of human retinal microvascular endothelial cells under high-glucose conditions via modulating miR-30-3p. Zeng Q, Liu J. Gene; 2020 Nov 15; 760():144992. PubMed ID: 32721474 [Abstract] [Full Text] [Related] Page: [Next] [New Search]