These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


201 related items for PubMed ID: 25224551

  • 21. Changes in end-tidal carbon dioxide and volumetric carbon dioxide as predictors of volume responsiveness in hemodynamically unstable patients.
    Young A, Marik PE, Sibole S, Grooms D, Levitov A.
    J Cardiothorac Vasc Anesth; 2013 Aug; 27(4):681-4. PubMed ID: 23182383
    [Abstract] [Full Text] [Related]

  • 22. A challenge with 5 cmH2O of positive end-expiratory pressure predicts fluid responsiveness in neurosurgery patients with protective ventilation: an observational study.
    Ali A, Aygun E, Abdullah T, Bolsoy-Deveci S, Orhan-Sungur M, Canbaz M, Ozkan Akinci I.
    Minerva Anestesiol; 2019 Nov; 85(11):1184-1192. PubMed ID: 31213047
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. The passive leg-raising maneuver cannot accurately predict fluid responsiveness in patients with intra-abdominal hypertension.
    Mahjoub Y, Touzeau J, Airapetian N, Lorne E, Hijazi M, Zogheib E, Tinturier F, Slama M, Dupont H.
    Crit Care Med; 2010 Sep; 38(9):1824-9. PubMed ID: 20639753
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Changes in end-tidal CO2 could predict fluid responsiveness in the passive leg raising test but not in the mini-fluid challenge test: A prospective and observational study.
    Xiao-ting W, Hua Z, Da-wei L, Hong-min Z, Huai-wu H, Yun L, Wen-zhao C.
    J Crit Care; 2015 Oct; 30(5):1061-6. PubMed ID: 26140954
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Positive end-expiratory pressure-induced functional recruitment in patients with acute respiratory distress syndrome.
    Di Marco F, Devaquet J, Lyazidi A, Galia F, da Costa NP, Fumagalli R, Brochard L.
    Crit Care Med; 2010 Jan; 38(1):127-32. PubMed ID: 19730254
    [Abstract] [Full Text] [Related]

  • 31. Topographic distribution of tidal ventilation in acute respiratory distress syndrome: effects of positive end-expiratory pressure and pressure support.
    Mauri T, Bellani G, Confalonieri A, Tagliabue P, Turella M, Coppadoro A, Citerio G, Patroniti N, Pesenti A.
    Crit Care Med; 2013 Jul; 41(7):1664-73. PubMed ID: 23507723
    [Abstract] [Full Text] [Related]

  • 32. Comparative study of pressure- and volume-controlled ventilation on stroke volume variation as a predictor of fluid responsiveness in patients undergoing major abdominal surgery.
    Lee JY, Park HY, Jung WS, Jo YY, Kwak HJ.
    J Crit Care; 2012 Oct; 27(5):531.e9-14. PubMed ID: 22300491
    [Abstract] [Full Text] [Related]

  • 33. A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: a randomized, controlled trial.
    Villar J, Kacmarek RM, Pérez-Méndez L, Aguirre-Jaime A.
    Crit Care Med; 2006 May; 34(5):1311-8. PubMed ID: 16557151
    [Abstract] [Full Text] [Related]

  • 34. Effect of pressure support on end-expiratory lung volume and lung diffusion for carbon monoxide.
    Pinto Da Costa N, Di Marco F, Lyazidi A, Carteaux G, Sarni M, Brochard L.
    Crit Care Med; 2011 Oct; 39(10):2283-9. PubMed ID: 21666442
    [Abstract] [Full Text] [Related]

  • 35. Variation of Left Ventricular Outflow Tract Velocity Time Integral at Different Positive End-Expiratory Pressure Levels Can Predict Fluid Responsiveness in Mechanically Ventilated Critically Ill Patients.
    Zhou G, Zhang H, Wang X, Liu D.
    J Cardiothorac Vasc Anesth; 2022 Aug; 36(8 Pt B):3101-3108. PubMed ID: 35599102
    [Abstract] [Full Text] [Related]

  • 36. Comparison of arterial systolic pressure variation with other clinical parameters to predict the response to fluid challenges during cardiac surgery.
    Bennett-Guerrero E, Kahn RA, Moskowitz DM, Falcucci O, Bodian CA.
    Mt Sinai J Med; 2002 Aug; 69(1-2):96-100. PubMed ID: 11832979
    [Abstract] [Full Text] [Related]

  • 37. Predicting fluid responsiveness during infrarenal aortic cross-clamping in pigs.
    Biais M, Calderon J, Pernot M, Barandon L, Couffinhal T, Ouattara A, Sztark F.
    J Cardiothorac Vasc Anesth; 2013 Dec; 27(6):1101-7. PubMed ID: 24060469
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Influence of increased intra-abdominal pressure on fluid responsiveness predicted by pulse pressure variation and stroke volume variation in a porcine model.
    Renner J, Gruenewald M, Quaden R, Hanss R, Meybohm P, Steinfath M, Scholz J, Bein B.
    Crit Care Med; 2009 Feb; 37(2):650-8. PubMed ID: 19114894
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.