These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
374 related items for PubMed ID: 25227272
1. Particle size dependent deposition and pulmonary inflammation after short-term inhalation of silver nanoparticles. Braakhuis HM, Gosens I, Krystek P, Boere JA, Cassee FR, Fokkens PH, Post JA, van Loveren H, Park MV. Part Fibre Toxicol; 2014 Sep 17; 11():49. PubMed ID: 25227272 [Abstract] [Full Text] [Related]
3. Nanometer-long Ge-imogolite nanotubes cause sustained lung inflammation and fibrosis in rats. van den Brule S, Beckers E, Chaurand P, Liu W, Ibouraadaten S, Palmai-Pallag M, Uwambayinema F, Yakoub Y, Avellan A, Levard C, Haufroid V, Marbaix E, Thill A, Lison D, Rose J. Part Fibre Toxicol; 2014 Dec 14; 11():67. PubMed ID: 25497478 [Abstract] [Full Text] [Related]
4. Identification of the appropriate dose metric for pulmonary inflammation of silver nanoparticles in an inhalation toxicity study. Braakhuis HM, Cassee FR, Fokkens PH, de la Fonteyne LJ, Oomen AG, Krystek P, de Jong WH, van Loveren H, Park MV. Nanotoxicology; 2016 Dec 14; 10(1):63-73. PubMed ID: 25704116 [Abstract] [Full Text] [Related]
5. Reduced pulmonary function and increased pro-inflammatory cytokines in nanoscale carbon black-exposed workers. Zhang R, Dai Y, Zhang X, Niu Y, Meng T, Li Y, Duan H, Bin P, Ye M, Jia X, Shen M, Yu S, Yang X, Gao W, Zheng Y. Part Fibre Toxicol; 2014 Dec 14; 11():73. PubMed ID: 25497989 [Abstract] [Full Text] [Related]
8. Pulmonary and hemostatic toxicity of multi-walled carbon nanotubes and zinc oxide nanoparticles after pulmonary exposure in Bmal1 knockout mice. Luyts K, Smulders S, Napierska D, Van Kerckhoven S, Poels K, Scheers H, Hemmeryckx B, Nemery B, Hoylaerts MF, Hoet PH. Part Fibre Toxicol; 2014 Nov 14; 11():61. PubMed ID: 25394423 [Abstract] [Full Text] [Related]
9. Quantitative biokinetics over a 28 day period of freshly generated, pristine, 20 nm silver nanoparticle aerosols in healthy adult rats after a single 1½-hour inhalation exposure. Kreyling WG, Holzwarth U, Hirn S, Schleh C, Wenk A, Schäffler M, Haberl N, Gibson N. Part Fibre Toxicol; 2020 Jun 05; 17(1):21. PubMed ID: 32503677 [Abstract] [Full Text] [Related]
10. Mass or total surface area with aerosol size distribution as exposure metrics for inflammatory, cytotoxic and oxidative lung responses in rats exposed to titanium dioxide nanoparticles. Noël A, Truchon G, Cloutier Y, Charbonneau M, Maghni K, Tardif R. Toxicol Ind Health; 2017 Apr 05; 33(4):351-364. PubMed ID: 27256293 [Abstract] [Full Text] [Related]
11. Lung function changes in Sprague-Dawley rats after prolonged inhalation exposure to silver nanoparticles. Sung JH, Ji JH, Yoon JU, Kim DS, Song MY, Jeong J, Han BS, Han JH, Chung YH, Kim J, Kim TS, Chang HK, Lee EJ, Lee JH, Yu IJ. Inhal Toxicol; 2008 Apr 05; 20(6):567-74. PubMed ID: 18444009 [Abstract] [Full Text] [Related]
12. Pulmonary effects of silver nanoparticle size, coating, and dose over time upon intratracheal instillation. Silva RM, Anderson DS, Franzi LM, Peake JL, Edwards PC, Van Winkle LS, Pinkerton KE. Toxicol Sci; 2015 Mar 05; 144(1):151-62. PubMed ID: 25628415 [Abstract] [Full Text] [Related]
13. Organ burden and pulmonary toxicity of nano-sized copper (II) oxide particles after short-term inhalation exposure. Gosens I, Cassee FR, Zanella M, Manodori L, Brunelli A, Costa AL, Bokkers BG, de Jong WH, Brown D, Hristozov D, Stone V. Nanotoxicology; 2016 Oct 05; 10(8):1084-95. PubMed ID: 27132941 [Abstract] [Full Text] [Related]
14. Effects of concentrated ambient particles on normal and hypersecretory airways in rats. Harkema JR, Keeler G, Wagner J, Morishita M, Timm E, Hotchkiss J, Marsik F, Dvonch T, Kaminski N, Barr E. Res Rep Health Eff Inst; 2004 Aug 05; (120):1-68; discussion 69-79. PubMed ID: 15543855 [Abstract] [Full Text] [Related]
15. Mode of silver clearance following 28-day inhalation exposure to silver nanoparticles determined from lung burden assessment including post-exposure observation periods. Jo MS, Kim JK, Kim Y, Kim HP, Kim HS, Ahn K, Lee JH, Faustman EM, Gulumian M, Kelman B, Yu IJ. Arch Toxicol; 2020 Mar 05; 94(3):773-784. PubMed ID: 32157349 [Abstract] [Full Text] [Related]
16. Even lobar deposition of poorly soluble gold nanoparticles (AuNPs) is similar to that of soluble silver nanoparticles (AgNPs). Kim HP, Kim JK, Jo MS, Park JD, Ahn K, Gulumian M, Oberdörster G, Yu IJ. Part Fibre Toxicol; 2020 Oct 20; 17(1):54. PubMed ID: 33081787 [Abstract] [Full Text] [Related]
17. Recovery from silver-nanoparticle-exposure-induced lung inflammation and lung function changes in Sprague Dawley rats. Song KS, Sung JH, Ji JH, Lee JH, Lee JS, Ryu HR, Lee JK, Chung YH, Park HM, Shin BS, Chang HK, Kelman B, Yu IJ. Nanotoxicology; 2013 Mar 20; 7(2):169-80. PubMed ID: 22264098 [Abstract] [Full Text] [Related]
19. Kinetic time courses of inhaled silver nanoparticles in rats. Andriamasinoro SN, Dieme D, Marie-Desvergne C, Serventi AM, Debia M, Haddad S, Bouchard M. Arch Toxicol; 2022 Feb 20; 96(2):487-498. PubMed ID: 34787690 [Abstract] [Full Text] [Related]
20. Lung retention and particokinetics of silver and gold nanoparticles in rats following subacute inhalation co-exposure. Kim JK, Kim HP, Park JD, Ahn K, Kim WY, Gulumian M, Oberdörster G, Yu IJ. Part Fibre Toxicol; 2021 Jan 21; 18(1):5. PubMed ID: 33478543 [Abstract] [Full Text] [Related] Page: [Next] [New Search]