These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1115 related items for PubMed ID: 25233896

  • 1. Carbon nanotube-reinforced hydroxyapatite composite and their interaction with human osteoblast in vitro.
    Khalid P, Hussain MA, Rekha PD, Arun AB.
    Hum Exp Toxicol; 2015 May; 34(5):548-56. PubMed ID: 25233896
    [Abstract] [Full Text] [Related]

  • 2. Carbon Nanotube Reinforced Hydroxyapatite Nanocomposites As Bone Implants: Nanostructure, Mechanical Strength And Biocompatibility.
    Lawton K, Le H, Tredwin C, Handy RD.
    Int J Nanomedicine; 2019 May; 14():7947-7962. PubMed ID: 31632010
    [Abstract] [Full Text] [Related]

  • 3. Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro.
    Balani K, Anderson R, Laha T, Andara M, Tercero J, Crumpler E, Agarwal A.
    Biomaterials; 2007 Feb; 28(4):618-24. PubMed ID: 17007921
    [Abstract] [Full Text] [Related]

  • 4. Fabrication and in vivo evaluation of hydroxyapatite/carbon nanotube electrospun fibers for biomedical/dental application.
    Khan AS, Hussain AN, Sidra L, Sarfraz Z, Khalid H, Khan M, Manzoor F, Shahzadi L, Yar M, Rehman IU.
    Mater Sci Eng C Mater Biol Appl; 2017 Nov 01; 80():387-396. PubMed ID: 28866179
    [Abstract] [Full Text] [Related]

  • 5. Boron nitride nanotube reinforced hydroxyapatite composite: mechanical and tribological performance and in-vitro biocompatibility to osteoblasts.
    Lahiri D, Singh V, Benaduce AP, Seal S, Kos L, Agarwal A.
    J Mech Behav Biomed Mater; 2011 Jan 01; 4(1):44-56. PubMed ID: 21094479
    [Abstract] [Full Text] [Related]

  • 6. Preparation, characterization and properties of nano-hydroxyapatite/polypropylene carbonate biocomposite.
    Liao J, Li Y, Zou Q, Duan X, Yang Z, Xie Y, Liu H.
    Mater Sci Eng C Mater Biol Appl; 2016 Jun 01; 63():285-91. PubMed ID: 27040221
    [Abstract] [Full Text] [Related]

  • 7. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles.
    Tetteh G, Khan AS, Delaine-Smith RM, Reilly GC, Rehman IU.
    J Mech Behav Biomed Mater; 2014 Nov 01; 39():95-110. PubMed ID: 25117379
    [Abstract] [Full Text] [Related]

  • 8. Domination of volumetric toughening by silver nanoparticles over interfacial strengthening of carbon nanotubes in bactericidal hydroxyapatite biocomposite.
    Herkendell K, Shukla VR, Patel AK, Balani K.
    Mater Sci Eng C Mater Biol Appl; 2014 Jan 01; 34():455-67. PubMed ID: 24268282
    [Abstract] [Full Text] [Related]

  • 9. Mechanical and in vitro biological performances of hydroxyapatite-carbon nanotube composite coatings deposited on Ti by aerosol deposition.
    Hahn BD, Lee JM, Park DS, Choi JJ, Ryu J, Yoon WH, Lee BK, Shin DS, Kim HE.
    Acta Biomater; 2009 Oct 01; 5(8):3205-14. PubMed ID: 19446047
    [Abstract] [Full Text] [Related]

  • 10. An efficient method to prepare magnetic hydroxyapatite-functionalized multi-walled carbon nanotubes nanocomposite for bone defects.
    Afroze JD, Abden MJ, Islam MA.
    Mater Sci Eng C Mater Biol Appl; 2018 May 01; 86():95-102. PubMed ID: 29525102
    [Abstract] [Full Text] [Related]

  • 11. Reinforcement of calcium phosphate cement with multi-walled carbon nanotubes and bovine serum albumin for injectable bone substitute applications.
    Chew KK, Low KL, Sharif Zein SH, McPhail DS, Gerhardt LC, Roether JA, Boccaccini AR.
    J Mech Behav Biomed Mater; 2011 Apr 01; 4(3):331-9. PubMed ID: 21316621
    [Abstract] [Full Text] [Related]

  • 12. Novel polypropylene biocomposites reinforced with carbon nanotubes and hydroxyapatite nanorods for bone replacements.
    Liao CZ, Li K, Wong HM, Tong WY, Yeung KW, Tjong SC.
    Mater Sci Eng C Mater Biol Appl; 2013 Apr 01; 33(3):1380-8. PubMed ID: 23827585
    [Abstract] [Full Text] [Related]

  • 13. Gel-derived bioglass as a compound of hydroxyapatite composites.
    Cholewa-Kowalska K, Kokoszka J, Laczka M, Niedźwiedzki L, Madej W, Osyczka AM.
    Biomed Mater; 2009 Oct 01; 4(5):055007. PubMed ID: 19779249
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Biocompatible multi-walled carbon nanotube-chitosan-folic acid nanoparticle hybrids as GFP gene delivery materials.
    Liu X, Zhang Y, Ma D, Tang H, Tan L, Xie Q, Yao S.
    Colloids Surf B Biointerfaces; 2013 Nov 01; 111():224-31. PubMed ID: 23831590
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Fostering hydroxyapatite bioactivity and mechanical strength by Si-doping and reinforcing with multiwall carbon nanotubes.
    Belmamouni Y, Bricha M, Essassi el M, Ferreira JM, El Mabrouk K.
    J Nanosci Nanotechnol; 2014 Jun 01; 14(6):4409-17. PubMed ID: 24738405
    [Abstract] [Full Text] [Related]

  • 19. Bioactive hydroxyapatite coatings on polymer composites for orthopedic implants.
    Auclair-Daigle C, Bureau MN, Legoux JG, Yahia L.
    J Biomed Mater Res A; 2005 Jun 15; 73(4):398-408. PubMed ID: 15892136
    [Abstract] [Full Text] [Related]

  • 20. Effect of ultrasound irradiation on the production of nHAp/MWCNT nanocomposites.
    Lobo AO, Zanin H, Siqueira IA, Leite NC, Marciano FR, Corat EJ.
    Mater Sci Eng C Mater Biol Appl; 2013 Oct 15; 33(7):4305-12. PubMed ID: 23910347
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 56.