These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
211 related items for PubMed ID: 25240793
1. Non-photochemical quenching and xanthophyll cycle activities in six green algal species suggest mechanistic differences in the process of excess energy dissipation. Quaas T, Berteotti S, Ballottari M, Flieger K, Bassi R, Wilhelm C, Goss R. J Plant Physiol; 2015 Jan 01; 172():92-103. PubMed ID: 25240793 [Abstract] [Full Text] [Related]
2. The xanthophyll cycle in green algae (chlorophyta): its role in the photosynthetic apparatus. Masojídek J, Kopecký J, Koblízek M, Torzillo G. Plant Biol (Stuttg); 2004 May 01; 6(3):342-9. PubMed ID: 15143443 [Abstract] [Full Text] [Related]
3. Diurnal changes in the xanthophyll cycle pigments of freshwater algae correlate with the environmental hydrogen peroxide concentration rather than non-photochemical quenching. Roach T, Miller R, Aigner S, Kranner I. Ann Bot; 2015 Sep 01; 116(4):519-27. PubMed ID: 25878139 [Abstract] [Full Text] [Related]
5. Photoadaptation of two members of the Chlorophyta (Scenedesmus and Chlorella) in laboratory and outdoor cultures: changes in chlorophyll fluorescence quenching and the xanthophyll cycle. Masojídek J, Torzillo G, Koblízek M, Kopecký J, Bernardini P, Sacchi A, Komenda J. Planta; 1999 Jul 01; 209(1):126-35. PubMed ID: 10467039 [Abstract] [Full Text] [Related]
8. Evolutionary divergence of photoprotection in the green algal lineage: a plant-like violaxanthin de-epoxidase enzyme activates the xanthophyll cycle in the green alga Chlorella vulgaris modulating photoprotection. Girolomoni L, Bellamoli F, de la Cruz Valbuena G, Perozeni F, D'Andrea C, Cerullo G, Cazzaniga S, Ballottari M. New Phytol; 2020 Oct 01; 228(1):136-150. PubMed ID: 32442330 [Abstract] [Full Text] [Related]
9. The importance of a highly active and DeltapH-regulated diatoxanthin epoxidase for the regulation of the PS II antenna function in diadinoxanthin cycle containing algae. Goss R, Ann Pinto E, Wilhelm C, Richter M. J Plant Physiol; 2006 Oct 01; 163(10):1008-21. PubMed ID: 16971213 [Abstract] [Full Text] [Related]
10. Non-photochemical fluorescence quenching in Chromera velia is enabled by fast violaxanthin de-epoxidation. Kotabová E, Kaňa R, Jarešová J, Prášil O. FEBS Lett; 2011 Jun 23; 585(12):1941-5. PubMed ID: 21570974 [Abstract] [Full Text] [Related]
11. Molecular genetics of xanthophyll-dependent photoprotection in green algae and plants. Baroli I, Niyogi KK. Philos Trans R Soc Lond B Biol Sci; 2000 Oct 29; 355(1402):1385-94. PubMed ID: 11127993 [Abstract] [Full Text] [Related]
12. Photoprotection in a monophyletic branch of chlorophyte algae is independent of energy-dependent quenching (qE). Christa G, Cruz S, Jahns P, de Vries J, Cartaxana P, Esteves AC, Serôdio J, Gould SB. New Phytol; 2017 May 29; 214(3):1132-1144. PubMed ID: 28152190 [Abstract] [Full Text] [Related]
13. The fine-tuning of NPQ in diatoms relies on the regulation of both xanthophyll cycle enzymes. Blommaert L, Chafai L, Bailleul B. Sci Rep; 2021 Jun 17; 11(1):12750. PubMed ID: 34140542 [Abstract] [Full Text] [Related]
14. Non-photochemical quenching of chlorophyll a fluorescence: early history and characterization of two xanthophyll-cycle mutants of Chlamydomonas reinhardtii. Seufferheld MJ. Funct Plant Biol; 2002 Oct 17; 29(10):1141-1155. PubMed ID: 32689567 [Abstract] [Full Text] [Related]
15. Evidence for a rebinding of antheraxanthin to the light-harvesting complex during the epoxidation reaction of the violaxanthin cycle. Goss R, Lepetit B, Wilhelm C. J Plant Physiol; 2006 Mar 17; 163(5):585-90. PubMed ID: 16473664 [Abstract] [Full Text] [Related]
16. Violaxanthin de-epoxidase is rate-limiting for non-photochemical quenching under subsaturating light or during chilling in Arabidopsis. Chen Z, Gallie DR. Plant Physiol Biochem; 2012 Sep 17; 58():66-82. PubMed ID: 22771437 [Abstract] [Full Text] [Related]
17. Analysis of non-photochemical energy dissipating processes in wild type Dunaliella salina (green algae) and in zea1, a mutant constitutively accumulating zeaxanthin. Thaipratum R, Melis A, Svasti J, Yokthongwattana K. J Plant Res; 2009 Jul 17; 122(4):465-76. PubMed ID: 19333687 [Abstract] [Full Text] [Related]
18. Rapid formation of antheraxanthin and zeaxanthin in seconds in microalgae and its relation to non-photochemical quenching. Sun KM, Gao C, Zhang J, Tang X, Wang Z, Zhang X, Li Y. Photosynth Res; 2020 Jun 17; 144(3):317-326. PubMed ID: 32323065 [Abstract] [Full Text] [Related]
19. Identification of distinct pH- and zeaxanthin-dependent quenching in LHCSR3 from Chlamydomonas reinhardtii. Troiano JM, Perozeni F, Moya R, Zuliani L, Baek K, Jin E, Cazzaniga S, Ballottari M, Schlau-Cohen GS. Elife; 2021 Jan 15; 10():. PubMed ID: 33448262 [Abstract] [Full Text] [Related]
20. Assessing leaf photoprotective mechanisms using terrestrial LiDAR: towards mapping canopy photosynthetic performance in three dimensions. Magney TS, Eusden SA, Eitel JUH, Logan BA, Jiang J, Vierling LA. New Phytol; 2014 Jan 15; 201(1):344-356. PubMed ID: 24032717 [Abstract] [Full Text] [Related] Page: [Next] [New Search]