These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
506 related items for PubMed ID: 25241070
1. Repeated transcranial magnetic stimulation prevents kindling-induced changes in electrophysiological properties of rat hippocampal CA1 pyramidal neurons. Shojaei A, Semnanian S, Janahmadi M, Moradi-Chameh H, Firoozabadi SM, Mirnajafi-Zadeh J. Neuroscience; 2014 Nov 07; 280():181-92. PubMed ID: 25241070 [Abstract] [Full Text] [Related]
2. Effect of low frequency repetitive transcranial magnetic stimulation on kindling-induced changes in electrophysiological properties of rat CA1 pyramidal neurons. Moradi Chameh H, Janahmadi M, Semnanian S, Shojaei A, Mirnajafi-Zadeh J. Brain Res; 2015 May 05; 1606():34-43. PubMed ID: 25721786 [Abstract] [Full Text] [Related]
3. Electrical low frequency stimulation of the kindling site preserves the electrophysiological properties of the rat hippocampal CA1 pyramidal neurons from the destructive effects of amygdala kindling: the basis for a possible promising epilepsy therapy. Ghotbedin Z, Janahmadi M, Mirnajafi-Zadeh J, Behzadi G, Semnanian S. Brain Stimul; 2013 Jul 05; 6(4):515-23. PubMed ID: 23228730 [Abstract] [Full Text] [Related]
4. Repetitive transcranial magnetic stimulation increases excitability of hippocampal CA1 pyramidal neurons. Tan T, Xie J, Tong Z, Liu T, Chen X, Tian X. Brain Res; 2013 Jul 03; 1520():23-35. PubMed ID: 23651978 [Abstract] [Full Text] [Related]
5. The role of 5-HT1A receptors of hippocampal CA1 region in anticonvulsant effects of low-frequency stimulation in amygdala kindled rats. Gharib A, Sayyahi Z, Komaki A, Barkley V, Sarihi A, Mirnajafi-Zadeh J. Physiol Behav; 2018 Nov 01; 196():119-125. PubMed ID: 30179595 [Abstract] [Full Text] [Related]
6. Ca2+ Channels Involvement in Low-Frequency Stimulation-Mediated Suppression of Intrinsic Excitability of Hippocampal CA1 Pyramidal Cells in a Rat Amygdala Kindling Model. Ghotbeddin Z, Heysieattalab S, Borjkhani M, Mirnajafi-Zadeh J, Semnanian S, Hosseinmardi N, Janahmadi M. Neuroscience; 2019 May 15; 406():234-248. PubMed ID: 30885638 [Abstract] [Full Text] [Related]
7. Low-frequency electrical stimulation enhances the effectiveness of phenobarbital on GABAergic currents in hippocampal slices of kindled rats. Asgari A, Semnanian S, Atapour N, Shojaei A, Moradi-Chameh H, Ghafouri S, Sheibani V, Mirnajafi-Zadeh J. Neuroscience; 2016 Aug 25; 330():26-38. PubMed ID: 27235746 [Abstract] [Full Text] [Related]
8. Repetitive transcranial magnetic stimulation decreases the kindling induced synaptic potentiation: effects of frequency and coil shape. Yadollahpour A, Firouzabadi SM, Shahpari M, Mirnajafi-Zadeh J. Epilepsy Res; 2014 Feb 25; 108(2):190-201. PubMed ID: 24368132 [Abstract] [Full Text] [Related]
9. Increased inhibitory synaptic activity in the hippocampus (CA1) of genetic absence epilepsy rats: Relevance of kindling resistance. Çarçak N, Dileköz E, Gülhan R, Onur R, Onat FY, Sara Y. Epilepsy Res; 2016 Oct 25; 126():70-7. PubMed ID: 27434859 [Abstract] [Full Text] [Related]
10. Epilepsy induced by extended amygdala-kindling in rats: lack of clear association between development of spontaneous seizures and neuronal damage. Brandt C, Ebert U, Löscher W. Epilepsy Res; 2004 Dec 25; 62(2-3):135-56. PubMed ID: 15579302 [Abstract] [Full Text] [Related]
11. Kindling-induced changes in plasticity of the rat amygdala and hippocampus. Schubert M, Siegmund H, Pape HC, Albrecht D. Learn Mem; 2005 Dec 25; 12(5):520-6. PubMed ID: 16204204 [Abstract] [Full Text] [Related]
12. Resistance of immature hippocampus to morphologic and physiologic alterations following status epilepticus or kindling. Haas KZ, Sperber EF, Opanashuk LA, Stanton PK, Moshé SL. Hippocampus; 2001 Dec 25; 11(6):615-25. PubMed ID: 11811655 [Abstract] [Full Text] [Related]
13. Abnormal neuronal excitability in hippocampal slices from kindled rats. King GL, Dingledine R, Giacchino JL, McNamara JO. J Neurophysiol; 1985 Nov 25; 54(5):1295-304. PubMed ID: 3001236 [Abstract] [Full Text] [Related]
14. Chronic high-frequency repetitive transcranial magnetic stimulation improves age-related cognitive impairment in parallel with alterations in neuronal excitability and the voltage-dependent Ca2+ current in female mice. Wang HL, Xian XH, Wang YY, Geng Y, Han B, Wang MW, Li WB. Neurobiol Learn Mem; 2015 Feb 25; 118():1-7. PubMed ID: 25451310 [Abstract] [Full Text] [Related]
15. Hippocampal hyperexcitability facilitates amygdala kindling in rats. Mirnajafi-Zadeh J, Pourgholami MH. Indian J Med Res; 2002 Jul 25; 116():35-40. PubMed ID: 12514976 [Abstract] [Full Text] [Related]
16. Ketogenic diet protects against epileptogenesis as well as neuronal loss in amygdaloid-kindling seizures. Jiang Y, Yang Y, Wang S, Ding Y, Guo Y, Zhang MM, Wen SQ, Ding MP. Neurosci Lett; 2012 Feb 02; 508(1):22-6. PubMed ID: 22178860 [Abstract] [Full Text] [Related]
17. Presynaptic GABA(B) receptors on glutamatergic terminals of CA1 pyramidal cells decrease in efficacy after partial hippocampal kindling. Poon N, Kloosterman F, Wu C, Leung LS. Synapse; 2006 Mar 01; 59(3):125-34. PubMed ID: 16342056 [Abstract] [Full Text] [Related]
18. ERK activation is required for the antiepileptogenic effect of low frequency electrical stimulation in kindled rats. Mardani P, Oryan S, Sarihi A, Komaki A, Shojaei A, Dehghan S, Mirnajafi-Zadeh J. Brain Res Bull; 2018 Jun 01; 140():132-139. PubMed ID: 29705048 [Abstract] [Full Text] [Related]
19. Endocannabinoid CB1 receptors are involved in antiepileptogenic effect of low frequency electrical stimulation during perforant path kindling in rats. Mardani P, Oryan S, Sarihi A, Alaei E, Komaki A, Mirnajafi-Zadeh J. Epilepsy Res; 2018 Aug 01; 144():71-81. PubMed ID: 29800824 [Abstract] [Full Text] [Related]
20. Low-intensity repetitive magnetic stimulation lowers action potential threshold and increases spike firing in layer 5 pyramidal neurons in vitro. Tang AD, Hong I, Boddington LJ, Garrett AR, Etherington S, Reynolds JN, Rodger J. Neuroscience; 2016 Oct 29; 335():64-71. PubMed ID: 27568058 [Abstract] [Full Text] [Related] Page: [Next] [New Search]