These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


379 related items for PubMed ID: 25245326

  • 1. Phosphorene nanoribbon as a promising candidate for thermoelectric applications.
    Zhang J, Liu HJ, Cheng L, Wei J, Liang JH, Fan DD, Shi J, Tang XF, Zhang QJ.
    Sci Rep; 2014 Sep 23; 4():6452. PubMed ID: 25245326
    [Abstract] [Full Text] [Related]

  • 2. WSe2 nanoribbons: new high-performance thermoelectric materials.
    Chen KX, Luo ZY, Mo DC, Lyu SS.
    Phys Chem Chem Phys; 2016 Jun 28; 18(24):16337-44. PubMed ID: 27254307
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Tweaking the magnetism of MoS2 nanoribbon with hydrogen and carbon passivation.
    Sagynbaeva M, Panigrahi P, Yunguo L, Ramzan M, Ahuja R.
    Nanotechnology; 2014 Apr 25; 25(16):165703. PubMed ID: 24675167
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Excellent Thermoelectric Properties in monolayer WSe2 Nanoribbons due to Ultralow Phonon Thermal Conductivity.
    Wang J, Xie F, Cao XH, An SC, Zhou WX, Tang LM, Chen KQ.
    Sci Rep; 2017 Jan 25; 7():41418. PubMed ID: 28120912
    [Abstract] [Full Text] [Related]

  • 10. Enhanced thermoelectric performance of monolayer MoSSe, bilayer MoSSe and graphene/MoSSe heterogeneous nanoribbons.
    Deng S, Li L, Guy OJ, Zhang Y.
    Phys Chem Chem Phys; 2019 Aug 21; 21(33):18161-18169. PubMed ID: 31389445
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. An efficient mechanism for enhancing the thermoelectricity of nanoribbons by blocking phonon transport in 2D materials.
    Liu YY, Zeng YJ, Jia PZ, Cao XH, Jiang X, Chen KQ.
    J Phys Condens Matter; 2018 Jul 11; 30(27):275701. PubMed ID: 29799436
    [Abstract] [Full Text] [Related]

  • 13. Graphenylene nanoribbons: electronic, optical and thermoelectric properties from first-principles calculations.
    Meftakhutdinov RM, Sibatov RT, Kochaev AI.
    J Phys Condens Matter; 2020 May 22; 32(34):. PubMed ID: 32303006
    [Abstract] [Full Text] [Related]

  • 14. Electronic and magnetic properties and structural stability of BeO sheet and nanoribbons.
    Wu W, Lu P, Zhang Z, Guo W.
    ACS Appl Mater Interfaces; 2011 Dec 22; 3(12):4787-95. PubMed ID: 22039765
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Even-odd effect of spin-dependent transport and thermoelectric properties for ferromagnetic zigzag phosphorene nanoribbons under an electric field.
    Zhou B, Yuan J, Zhou X, Zhou B.
    J Phys Condens Matter; 2020 Aug 04; 32(43):. PubMed ID: 32668426
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Signature of excitonic insulators in phosphorene nanoribbons.
    Felipe Pereira de Oliveira A, Luisa da Rosa A, Cavalheiro Dias A.
    J Phys Condens Matter; 2024 May 28; 36(34):. PubMed ID: 38744299
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.