These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
257 related items for PubMed ID: 25248323
1. Using glucosamine to improve the properties of photocrosslinked gelatin scaffolds. Suo H, Xu K, Zheng X. J Biomater Appl; 2015 Feb; 29(7):977-87. PubMed ID: 25248323 [Abstract] [Full Text] [Related]
7. Enhanced mechanical and cell adhesive properties of photo-crosslinked PEG hydrogels by incorporation of gelatin in the networks. Liang J, Guo Z, Timmerman A, Grijpma D, Poot A. Biomed Mater; 2019 Jan 04; 14(2):024102. PubMed ID: 30524039 [Abstract] [Full Text] [Related]
8. Fabrication of photo-crosslinked chitosan- gelatin scaffold in sodium alginate hydrogel for chondrocyte culture. Zhao P, Deng C, Xu H, Tang X, He H, Lin C, Su J. Biomed Mater Eng; 2014 Jan 04; 24(1):633-41. PubMed ID: 24211948 [Abstract] [Full Text] [Related]
10. Tubular scaffolds of gelatin and poly(ε-caprolactone)-block-poly(γ-glutamic acid) blending hydrogel for the proliferation of the primary intestinal smooth muscle cells of rats. Jwo SC, Chiu CH, Tang SJ, Hsieh MF. Biomed Mater; 2013 Dec 04; 8(6):065002. PubMed ID: 24225182 [Abstract] [Full Text] [Related]
11. The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules. Shin H, Olsen BD, Khademhosseini A. Biomaterials; 2012 Apr 04; 33(11):3143-52. PubMed ID: 22265786 [Abstract] [Full Text] [Related]
12. Development and characterization of novel agar and gelatin injectable hydrogel as filler for peripheral nerve guidance channels. Tonda-Turo C, Gnavi S, Ruini F, Gambarotta G, Gioffredi E, Chiono V, Perroteau I, Ciardelli G. J Tissue Eng Regen Med; 2017 Jan 04; 11(1):197-208. PubMed ID: 24737714 [Abstract] [Full Text] [Related]
13. Engineered 3D-scaffolds of photocrosslinked chitosan-gelatin hydrogel hybrids for chronic wound dressings and regeneration. Carvalho IC, Mansur HS. Mater Sci Eng C Mater Biol Appl; 2017 Sep 01; 78():690-705. PubMed ID: 28576040 [Abstract] [Full Text] [Related]
14. Reduced Graphene Oxide-GelMA Hybrid Hydrogels as Scaffolds for Cardiac Tissue Engineering. Shin SR, Zihlmann C, Akbari M, Assawes P, Cheung L, Zhang K, Manoharan V, Zhang YS, Yüksekkaya M, Wan KT, Nikkhah M, Dokmeci MR, Tang XS, Khademhosseini A. Small; 2016 Jul 01; 12(27):3677-89. PubMed ID: 27254107 [Abstract] [Full Text] [Related]
15. Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications. Kai D, Prabhakaran MP, Stahl B, Eblenkamp M, Wintermantel E, Ramakrishna S. Nanotechnology; 2012 Mar 09; 23(9):095705. PubMed ID: 22322583 [Abstract] [Full Text] [Related]
17. Photo-cross-linkable methacrylated gelatin and hydroxyapatite hybrid hydrogel for modularly engineering biomimetic osteon. Zuo Y, Liu X, Wei D, Sun J, Xiao W, Zhao H, Guo L, Wei Q, Fan H, Zhang X. ACS Appl Mater Interfaces; 2015 May 20; 7(19):10386-94. PubMed ID: 25928732 [Abstract] [Full Text] [Related]
18. Mussel-inspired dopamine oligomer intercalated tough and resilient gelatin methacryloyl (GelMA) hydrogels for cartilage regeneration. Gan D, Xu T, Xing W, Wang M, Fang J, Wang K, Ge X, Chan CW, Ren F, Tan H, Lu X. J Mater Chem B; 2019 Mar 14; 7(10):1716-1725. PubMed ID: 32254913 [Abstract] [Full Text] [Related]