These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


135 related items for PubMed ID: 25256495

  • 1. Preparation and gel properties of low molecular weight curdlan by hydrolysis of curdlan with commercial α-amylase.
    Chen YF, Zhu Q, Wu SJ.
    Carbohydr Polym; 2014 Nov 26; 113():362-4. PubMed ID: 25256495
    [Abstract] [Full Text] [Related]

  • 2. Molecular weight effect on liquid crystalline gel formation of curdlan.
    Nobe M, Kuroda N, Dobashi T, Yamamoto T, Konno A, Nakata M.
    Biomacromolecules; 2005 Nov 26; 6(6):3373-9. PubMed ID: 16283768
    [Abstract] [Full Text] [Related]

  • 3. Production and optimization of curdlan produced by Pseudomonas sp. QL212.
    Yang M, Zhu Y, Li Y, Bao J, Fan X, Qu Y, Wang Y, Hu Z, Li Q.
    Int J Biol Macromol; 2016 Aug 26; 89():25-34. PubMed ID: 27086290
    [Abstract] [Full Text] [Related]

  • 4. Curdlan ester derivatives: synthesis, structure, and properties.
    Marubayashi H, Yukinaka K, Enomoto-Rogers Y, Takemura A, Iwata T.
    Carbohydr Polym; 2014 Mar 15; 103():427-33. PubMed ID: 24528750
    [Abstract] [Full Text] [Related]

  • 5. Water-soluble β-1,3-glucan prepared by degradation of curdlan with hydrogen peroxide.
    Zhu Q, Wu S.
    Food Chem; 2019 Jun 15; 283():302-304. PubMed ID: 30722875
    [Abstract] [Full Text] [Related]

  • 6. Osteoclast-mediated acidic hydrolysis of thermally gelled curdlan component of the bone scaffolds: Is it possible?
    Przekora A, Penolazzi L, Kalisz G, Kazimierczak P, Canal C, Wojcik M, Piva R, Sroka-Bartnicka A.
    Carbohydr Polym; 2022 Nov 01; 295():119914. PubMed ID: 35988991
    [Abstract] [Full Text] [Related]

  • 7. Comparison of the structure and the transport properties of low-set and high-set curdlan hydrogels.
    Gagnon MA, Lafleur M.
    J Colloid Interface Sci; 2011 May 15; 357(2):419-27. PubMed ID: 21402382
    [Abstract] [Full Text] [Related]

  • 8. Curdlan production from cassava starch hydrolysates by Agrobacterium sp. DH-2.
    Wan J, Shao Z, Jiang D, Gao H, Yang X.
    Bioprocess Biosyst Eng; 2022 May 15; 45(5):969-979. PubMed ID: 35312865
    [Abstract] [Full Text] [Related]

  • 9. Use of FT-IR, FT-Raman and thermal analysis to evaluate the gel formation of curdlan produced by Agrobacterium sp. IFO 13140 and determination of its rheological properties with food applicability.
    Mangolim CS, da Silva TT, Fenelon VC, do Nascimento A, Sato F, Matioli G.
    Food Chem; 2017 Oct 01; 232():369-378. PubMed ID: 28490087
    [Abstract] [Full Text] [Related]

  • 10. Heat treatment of curdlan enhances the enzymatic production of biologically active β-(1,3)-glucan oligosaccharides.
    Kumagai Y, Okuyama M, Kimura A.
    Carbohydr Polym; 2016 Aug 01; 146():396-401. PubMed ID: 27112889
    [Abstract] [Full Text] [Related]

  • 11. Optimization of culture medium and modeling of curdlan production from Paenibacillus polymyxa by RSM and ANN.
    Rafigh SM, Yazdi AV, Vossoughi M, Safekordi AA, Ardjmand M.
    Int J Biol Macromol; 2014 Sep 01; 70():463-73. PubMed ID: 25062991
    [Abstract] [Full Text] [Related]

  • 12. Novel sulfation of curdlan assisted by ultrasonication.
    Wong SS, Ngiam ZR, Kasapis S, Huang D.
    Int J Biol Macromol; 2010 Apr 01; 46(3):385-8. PubMed ID: 20060407
    [Abstract] [Full Text] [Related]

  • 13. Purification and characterization of a thermostable α-amylase produced by the fungus Paecilomyces variotii.
    Michelin M, Silva TM, Benassi VM, Peixoto-Nogueira SC, Moraes LA, Leão JM, Jorge JA, Terenzi HF, Polizeli Mde L.
    Carbohydr Res; 2010 Nov 02; 345(16):2348-53. PubMed ID: 20850111
    [Abstract] [Full Text] [Related]

  • 14. Comparison of curdlan and its carboxymethylated derivative by means of Rheology, DSC, and AFM.
    Jin Y, Zhang H, Yin Y, Nishinari K.
    Carbohydr Res; 2006 Jan 16; 341(1):90-9. PubMed ID: 16310757
    [Abstract] [Full Text] [Related]

  • 15. Curdlan conformation change during its hydrolysis by multi-domain β-1,3-glucanases.
    Yu P, Zhou F, Yang D.
    Food Chem; 2019 Jul 30; 287():20-27. PubMed ID: 30857690
    [Abstract] [Full Text] [Related]

  • 16. Degradation of curdlan using hydrogen peroxide.
    Wu S, Cai R, Sun Y.
    Food Chem; 2012 Dec 15; 135(4):2436-8. PubMed ID: 22980825
    [Abstract] [Full Text] [Related]

  • 17. Effects of carbon sources on production and properties of curdlan using Agrobaterium sp. DH-2.
    Wan J, Wang Y, Jiang D, Gao H, Yang G, Yang X.
    Prep Biochem Biotechnol; 2020 Dec 15; 50(9):857-864. PubMed ID: 32538270
    [Abstract] [Full Text] [Related]

  • 18. Description of recovery method used for curdlan produced by Agrobacterium sp. IFO 13140 and its relation to the morphology and physicochemical and technological properties of the polysaccharide.
    Mangolim CS, Silva TT, Fenelon VC, Koga LN, Ferreira SB, Bruschi ML, Matioli G.
    PLoS One; 2017 Dec 15; 12(2):e0171469. PubMed ID: 28245244
    [Abstract] [Full Text] [Related]

  • 19. From curdlan powder to the triple helix gel structure: an attenuated total reflection-infrared study of the gelation process.
    Gagnon MA, Lafleur M.
    Appl Spectrosc; 2007 Apr 15; 61(4):374-8. PubMed ID: 17456255
    [Abstract] [Full Text] [Related]

  • 20. Comparison of some properties of free and immobilized alpha-amylase by Aspergillus sclerotiorum in calcium alginate gel beads.
    Yagar H, Ertan F, Balkan B.
    Prep Biochem Biotechnol; 2008 Apr 15; 38(1):13-23. PubMed ID: 18080907
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.