These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
51 related items for PubMed ID: 25257409
21. Stephania delavayi Diels. inhibits breast carcinoma proliferation through the p38 MAPK/NF-κB/COX-2 pathway. Park DH, De Xu H, Shim J, Li YC, Lee JH, Cho SC, Han SS, Lee YL, Lee MJ, Kwon SW. Oncol Rep; 2011 Oct; 26(4):833-41. PubMed ID: 21725607 [Abstract] [Full Text] [Related]
23. Involvement of RAGE, MAPK and NF-κB pathways in AGEs-induced MMP-9 activation in HaCaT keratinocytes. Zhu P, Ren M, Yang C, Hu YX, Ran JM, Yan L. Exp Dermatol; 2012 Feb; 21(2):123-9. PubMed ID: 22229442 [Abstract] [Full Text] [Related]
24. Vanadium-induced kappaB-dependent transcription depends upon peroxide-induced activation of the p38 mitogen-activated protein kinase. Jaspers I, Samet JM, Erzurum S, Reed W. Am J Respir Cell Mol Biol; 2000 Jul; 23(1):95-102. PubMed ID: 10873158 [Abstract] [Full Text] [Related]
26. Participation of signaling cascades in the regulation of erythropoiesis under conditions of cytostatic treatment. Dygai AM, Zhdanov VV, Miroshnichenko LA, Udut EV, Zyuz'kov GN, Simanina EV, Chaikovskii AV, Stavrova LA, Trofimova ES, Burmina YV. Bull Exp Biol Med; 2015 Jan; 158(3):304-7. PubMed ID: 25578863 [Abstract] [Full Text] [Related]
27. Dipyridamole activation of mitogen-activated protein kinase phosphatase-1 mediates inhibition of lipopolysaccharide-induced cyclooxygenase-2 expression in RAW 264.7 cells. Chen TH, Kao YC, Chen BC, Chen CH, Chan P, Lee HM. Eur J Pharmacol; 2006 Jul 17; 541(3):138-46. PubMed ID: 16765938 [Abstract] [Full Text] [Related]
28. The p38 MAPK NF-κB pathway, not the ERK pathway, is involved in exogenous HIV-1 Tat-induced apoptotic cell death in retinal pigment epithelial cells. Bai L, Zhu X, Ma T, Wang J, Wang F, Zhang S. Int J Biochem Cell Biol; 2013 Aug 17; 45(8):1794-801. PubMed ID: 23732112 [Abstract] [Full Text] [Related]
29. Induction of Th1 cytokines by Leuconostoc mesenteroides subsp. mesenteroides (KCTC 3100) under Th2-type conditions and the requirement of NF-kappaB and p38/JNK. Kang H, Myung EJ, Ahn KS, Eom HJ, Han NS, Kim YB, Kim YJ, Sohn NW. Cytokine; 2009 May 17; 46(2):283-9. PubMed ID: 19299163 [Abstract] [Full Text] [Related]
30. 7b, a novel naphthalimide derivative, exhibited anti-inflammatory effects via targeted-inhibiting TAK1 following down-regulation of ERK1/2- and p38 MAPK-mediated activation of NF-κB in LPS-stimulated RAW264.7 macrophages. Shao J, Li Y, Wang Z, Xiao M, Yin P, Lu Y, Qian X, Xu Y, Liu J. Int Immunopharmacol; 2013 Oct 17; 17(2):216-28. PubMed ID: 23810444 [Abstract] [Full Text] [Related]
31. EV71 induces VCAM-1 expression via PDGF receptor, PI3-K/Akt, p38 MAPK, JNK and NF-kappaB in vascular smooth muscle cells. Tung WH, Sun CC, Hsieh HL, Wang SW, Horng JT, Yang CM. Cell Signal; 2007 Oct 17; 19(10):2127-37. PubMed ID: 17669626 [Abstract] [Full Text] [Related]
32. Activation of p38 MAPK in the substantia nigra leads to nuclear translocation of NF-kappaB in MPTP-treated mice: implication in Parkinson's disease. Karunakaran S, Ravindranath V. J Neurochem; 2009 Jun 17; 109(6):1791-9. PubMed ID: 19457134 [Abstract] [Full Text] [Related]
33. Roles of NF-kappaB and MAPK signaling pathways in morphological and cytoskeletal responses of microglia to double-stranded RNA. Nakamichi K, Saiki M, Kitani H, Kuboyama Y, Morimoto K, Takayama-Ito M, Kurane I. Neurosci Lett; 2007 Mar 13; 414(3):222-7. PubMed ID: 17284350 [Abstract] [Full Text] [Related]
34. Anti-inflammatory effect of glycoprotein isolated from Cudrania tricuspidata Bureau: involvement of MAPK/NF-κB signaling. Oh PS, Lim KT. Immunol Invest; 2011 Mar 13; 40(1):76-91. PubMed ID: 20923328 [Abstract] [Full Text] [Related]
35. The TIR/BB-loop mimetic AS-1 prevents cardiac hypertrophy by inhibiting IL-1R-mediated MyD88-dependent signaling. Zhu Y, Li T, Song J, Liu C, Hu Y, Que L, Ha T, Kelley J, Chen Q, Li C, Li Y. Basic Res Cardiol; 2011 Sep 13; 106(5):787-99. PubMed ID: 21533832 [Abstract] [Full Text] [Related]
36. Role of humoral factors in the regulation of hemopoiesis during immobilization stress. Dygai AM, Zhdanov VV, Epstein OI, Kirienkova EV, Gol'dberg ED. Bull Exp Biol Med; 2004 Mar 13; 137(3):215-9. PubMed ID: 15232621 [Abstract] [Full Text] [Related]
37. Monoaminergic regulation of hemopoiesis under extreme conditions. Dygai AM, Skurikhin EG. Bull Exp Biol Med; 2011 Jun 13; 151(2):171-8. PubMed ID: 22238743 [Abstract] [Full Text] [Related]
38. Role of central adrenergic structures in the regulation of granulocytopoiesis during cytostatic treatment. Dygai AM, Skurikhin EG, Pershina OV, Minakova MY, Goldberg ED. Bull Exp Biol Med; 2008 Apr 13; 145(4):406-11. PubMed ID: 19110579 [Abstract] [Full Text] [Related]
39. The Role of Intracellular Signaling Molecules in the Production of Granulocytic CSF Mononuclear Phagocytes in Stress and Cytostatic Influence. Zhdanov VV, Miroshnichenko LA, Zyuz'kov GN, Khrichkova TY, Udut EV, Simanina EV, Sherstoboev EY, Stavrova LA, Agafonov VI, Danilets MG, Trofimova ES, Minakova MY, Dygai AM. Bull Exp Biol Med; 2021 Aug 13; 171(4):411-415. PubMed ID: 34561791 [Abstract] [Full Text] [Related]
40. Involvement of NF-κB-dependent signaling and p38 MAPK signaling pathway in the regulation of hemopoiesis during restrain stress. Dygai AM, Zhdanov VV, Zyuz'kov GN, Udut EV, Miroshnichenko LA, Simanina EV, Chaikovskii AV, Stavrova LA, Danilets MG, Agafonov VI, Khrichkova TY. Bull Exp Biol Med; 2014 Sep 13; 157(5):548-51. PubMed ID: 25257409 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]