These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


246 related items for PubMed ID: 25263740

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Concentration, detection and discrimination of Bacillus anthracis spores in orange juice using aptamer based surface enhanced Raman spectroscopy.
    He L, D Deen B, Pagel AH, Diez-Gonzalez F, Labuza TP.
    Analyst; 2013 Mar 21; 138(6):1657-9. PubMed ID: 23386216
    [Abstract] [Full Text] [Related]

  • 4. Stability of silver colloids as substrate for surface enhanced Raman spectroscopy detection of dipicolinic acid.
    Guingab JD, Lauly B, Smith BW, Omenetto N, Winefordner JD.
    Talanta; 2007 Nov 30; 74(2):271-4. PubMed ID: 18371640
    [Abstract] [Full Text] [Related]

  • 5. SERS of meso-droplets supported on superhydrophobic wires allows exquisitely sensitive detection of dipicolinic acid, an anthrax biomarker, considerably below the infective dose.
    Cheung M, Lee WW, Cowcher DP, Goodacre R, Bell SE.
    Chem Commun (Camb); 2016 Aug 02; 52(64):9925-8. PubMed ID: 27432481
    [Abstract] [Full Text] [Related]

  • 6. Rapid dipicolinic acid extraction from Bacillus spores detected by surface-enhanced Raman spectroscopy.
    Farquharson S, Gift AD, Maksymiuk P, Inscore FE.
    Appl Spectrosc; 2004 Mar 02; 58(3):351-4. PubMed ID: 15035719
    [No Abstract] [Full Text] [Related]

  • 7. Fluorescent europium-modified polymer nanoparticles for rapid and sensitive anthrax sensors.
    Oh WK, Jeong YS, Song J, Jang J.
    Biosens Bioelectron; 2011 Nov 15; 29(1):172-7. PubMed ID: 21893406
    [Abstract] [Full Text] [Related]

  • 8. American Chemical Society meeting. Fast, sensitive scan targets anthrax.
    Service RF.
    Science; 2005 Apr 01; 308(5718):45. PubMed ID: 15802583
    [No Abstract] [Full Text] [Related]

  • 9. Nanoparticle-based substrates for surface-enhanced Raman scattering detection of bacterial spores.
    Cheng HW, Huan SY, Yu RQ.
    Analyst; 2012 Aug 21; 137(16):3601-8. PubMed ID: 22745931
    [Abstract] [Full Text] [Related]

  • 10. Quantitative surface-enhanced Raman spectroscopy of dipicolinic acid--towards rapid anthrax endospore detection.
    Bell SE, Mackle JN, Sirimuthu NM.
    Analyst; 2005 Apr 21; 130(4):545-9. PubMed ID: 15776166
    [Abstract] [Full Text] [Related]

  • 11. Mid-ultraviolet light-emitting diode detects dipicolinic acid.
    Li Q, Dasgupta PK, Temkin H, Crawford MH, Fischer AJ, Allerman AA, Bogart KH, Lee SR.
    Appl Spectrosc; 2004 Nov 21; 58(11):1360-3. PubMed ID: 15606942
    [Abstract] [Full Text] [Related]

  • 12. Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection.
    Zhang X, Zhao J, Whitney AV, Elam JW, Van Duyne RP.
    J Am Chem Soc; 2006 Aug 09; 128(31):10304-9. PubMed ID: 16881662
    [Abstract] [Full Text] [Related]

  • 13. Rapid analysis of Bacillus cereus spore biomarkers based on porous channel cuttlebone SERS substrate.
    Lai Y, Jiang G, Liang T, Huang X, Jiang W, Xu W, Sun R, Dai Z, Li C.
    Anal Chim Acta; 2024 Sep 01; 1320():343034. PubMed ID: 39142776
    [Abstract] [Full Text] [Related]

  • 14. Naphthalimide-Based DNA-Coupled Hybrid Assembly for Sensing Dipicolinic Acid: A Biomarker for Bacillus anthracis Spores.
    Verma M, Kaur N, Singh N.
    Langmuir; 2018 Jun 05; 34(22):6591-6600. PubMed ID: 29787278
    [Abstract] [Full Text] [Related]

  • 15. Rapid detection of Bacillus anthracis spores using a super-paramagnetic lateral-flow immunological detection system.
    Wang DB, Tian B, Zhang ZP, Deng JY, Cui ZQ, Yang RF, Wang XY, Wei HP, Zhang XE.
    Biosens Bioelectron; 2013 Apr 15; 42():661-7. PubMed ID: 23206542
    [Abstract] [Full Text] [Related]

  • 16. Perturbing Tandem Energy Transfer in Luminescent Heterobinuclear Lanthanide Coordination Polymer Nanoparticles Enables Real-Time Monitoring of Release of the Anthrax Biomarker from Bacterial Spores.
    Gao N, Zhang Y, Huang P, Xiang Z, Wu FY, Mao L.
    Anal Chem; 2018 Jun 05; 90(11):7004-7011. PubMed ID: 29701058
    [Abstract] [Full Text] [Related]

  • 17. Surface-enhanced Raman spectroscopic detection of a bacteria biomarker using gold nanoparticle immobilized substrates.
    Cheng HW, Huan SY, Wu HL, Shen GL, Yu RQ.
    Anal Chem; 2009 Dec 15; 81(24):9902-12. PubMed ID: 19928907
    [Abstract] [Full Text] [Related]

  • 18. A rapid biosensor for viable B. anthracis spores.
    Baeumner AJ, Leonard B, McElwee J, Montagna RA.
    Anal Bioanal Chem; 2004 Sep 15; 380(1):15-23. PubMed ID: 15309363
    [Abstract] [Full Text] [Related]

  • 19. Portable, quantitative detection of Bacillus bacterial spores using surface-enhanced Raman scattering.
    Cowcher DP, Xu Y, Goodacre R.
    Anal Chem; 2013 Mar 19; 85(6):3297-302. PubMed ID: 23409961
    [Abstract] [Full Text] [Related]

  • 20. Species-specific peptide ligands for the detection of Bacillus anthracis spores.
    Williams DD, Benedek O, Turnbough CL.
    Appl Environ Microbiol; 2003 Oct 19; 69(10):6288-93. PubMed ID: 14532093
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.