These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
246 related items for PubMed ID: 25263740
21. Differential detection of a surrogate biological threat agent (Bacillus globigii) with a portable surface plasmon resonance biosensor. Adducci BA, Gruszewski HA, Khatibi PA, Schmale DG. Biosens Bioelectron; 2016 Apr 15; 78():160-166. PubMed ID: 26606307 [Abstract] [Full Text] [Related]
25. Development of antibodies against anthrose tetrasaccharide for specific detection of Bacillus anthracis spores. Kuehn A, Kovác P, Saksena R, Bannert N, Klee SR, Ranisch H, Grunow R. Clin Vaccine Immunol; 2009 Dec 15; 16(12):1728-37. PubMed ID: 19793896 [Abstract] [Full Text] [Related]
28. Real time detection of anthrax spores using highly specific anti-EA1 recombinant antibodies produced by competitive panning. Love TE, Redmond C, Mayers CN. J Immunol Methods; 2008 May 20; 334(1-2):1-10. PubMed ID: 18395220 [Abstract] [Full Text] [Related]
32. Rapid chemical digestion of small acid-soluble spore proteins for analysis of Bacillus spores. Swatkoski S, Russell SC, Edwards N, Fenselau C. Anal Chem; 2006 Jan 01; 78(1):181-8. PubMed ID: 16383326 [Abstract] [Full Text] [Related]
33. Anthrax spore detection by a luminex assay based on monoclonal antibodies that recognize anthrose-containing oligosaccharides. Tamborrini M, Holzer M, Seeberger PH, Schürch N, Pluschke G. Clin Vaccine Immunol; 2010 Sep 01; 17(9):1446-51. PubMed ID: 20660139 [Abstract] [Full Text] [Related]
34. Peptides panned from a phage-displayed random peptide library are useful for the detection of Bacillus anthracis surrogates B. cereus 4342 and B. anthracis Sterne. Sainath Rao S, Mohan KV, Nguyen N, Abraham B, Abdouleva G, Zhang P, Atreya CD. Biochem Biophys Res Commun; 2010 Apr 23; 395(1):93-8. PubMed ID: 20350526 [Abstract] [Full Text] [Related]
36. A rapid approach for the detection of dipicolinic acid in bacterial spores using pyrolysis/mass spectrometry. Beverly MB, Basile F, Voorhees KJ, Hadfield TL. Rapid Commun Mass Spectrom; 1996 Apr 23; 10(4):455-8. PubMed ID: 8721041 [Abstract] [Full Text] [Related]
37. Surface-enhanced Raman spectroscopic detection of Bacillus subtilis spores using gold nanoparticle based substrates. Cheng HW, Chen YY, Lin XX, Huan SY, Wu HL, Shen GL, Yu RQ. Anal Chim Acta; 2011 Nov 30; 707(1-2):155-63. PubMed ID: 22027133 [Abstract] [Full Text] [Related]
38. RAZOR EX Anthrax Air Detection System for detection of Bacillus anthracis spores from aerosol collection samples: collaborative study. Hadfield T, Ryan V, Spaulding UK, Clemens KM, Ota IM, Brunelle SL. J AOAC Int; 2013 Nov 30; 96(2):392-8. PubMed ID: 23767365 [Abstract] [Full Text] [Related]
39. Rapid detection of Bacillus anthracis spores directly from powders with an evanescent wave fiber-optic biosensor. Tims TB, Lim DV. J Microbiol Methods; 2004 Oct 30; 59(1):127-30. PubMed ID: 15325759 [Abstract] [Full Text] [Related]
40. Application of the real-time PCR for the detection of airborne microbial pathogens in reference to the anthrax spores. Makino S, Cheun HI. J Microbiol Methods; 2003 May 30; 53(2):141-7. PubMed ID: 12654485 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]