These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
269 related items for PubMed ID: 25277596
21. A molecular description of how noble gases and nitrogen bind to a model site of anesthetic action. Trudell JR, Koblin DD, Eger EI. Anesth Analg; 1998 Aug; 87(2):411-8. PubMed ID: 9706942 [Abstract] [Full Text] [Related]
24. H3(+) as a trap for noble gases-3: multiple trapping of neon, argon, and krypton in X(n)H3(+) (n = 1-3). Pauzat F, Ellinger Y, Pilmé J, Mousis O. J Chem Phys; 2009 May 07; 130(17):174313. PubMed ID: 19425782 [Abstract] [Full Text] [Related]
25. Low-resolution detergent tracing in protein crystals using xenon or krypton to enhance X-ray contrast. Sauer O, Roth M, Schirmer T, Rummel G, Kratky C. Acta Crystallogr D Biol Crystallogr; 2002 Jan 07; 58(Pt 1):60-9. PubMed ID: 11752779 [Abstract] [Full Text] [Related]
26. Perspectives of hyperpolarized noble gas MRI beyond 3He. Lilburn DM, Pavlovskaya GE, Meersmann T. J Magn Reson; 2013 Apr 07; 229():173-86. PubMed ID: 23290627 [Abstract] [Full Text] [Related]
27. Direct Observation of Xe and Kr Adsorption in a Xe-Selective Microporous Metal-Organic Framework. Chen X, Plonka AM, Banerjee D, Krishna R, Schaef HT, Ghose S, Thallapally PK, Parise JB. J Am Chem Soc; 2015 Jun 10; 137(22):7007-10. PubMed ID: 26000710 [Abstract] [Full Text] [Related]
30. The role of van der Waals interactions in the adsorption of noble gases on metal surfaces. Chen DL, Al-Saidi WA, Johnson JK. J Phys Condens Matter; 2012 Oct 24; 24(42):424211. PubMed ID: 23032730 [Abstract] [Full Text] [Related]
33. Study of the scale-up, formulation, ageing and ammonia adsorption capacity of MIL-100(Fe), Cu-BTC and CPO-27(Ni) for use in respiratory protection filters. Hindocha S, Poulston S. Faraday Discuss; 2017 Sep 01; 201():113-125. PubMed ID: 28612864 [Abstract] [Full Text] [Related]
35. Identifying medically relevant xenon protein targets by in silico screening of the structural proteome. Winkler DA, Katz I, Warden A, Thornton AW, Farjot G. Med Gas Res; 2023 Sep 01; 13(1):33-38. PubMed ID: 35946221 [Abstract] [Full Text] [Related]
36. Crystallizing Atomic Xenon in a Flexible MOF to Probe and Understand Its Temperature-Dependent Breathing Behavior and Unusual Gas Adsorption Phenomenon. Wang H, Warren M, Jagiello J, Jensen S, Ghose SK, Tan K, Yu L, Emge TJ, Thonhauser T, Li J. J Am Chem Soc; 2020 Nov 25; 142(47):20088-20097. PubMed ID: 33172264 [Abstract] [Full Text] [Related]
37. Morphology of collisional nonlinear spectra in H2-Kr and H2-Xe mixtures. Głaz W, Bancewicz T, Godet JL, Maroulis G, Haskopoulos A. J Chem Phys; 2013 Mar 28; 138(12):124307. PubMed ID: 23556723 [Abstract] [Full Text] [Related]
38. Accurate potential energy curves for F(-)-Rg (Rg = He-Rn): spectroscopy and transport coefficients. Gray BR, Wright TG, Wood EL, Viehland LA. Phys Chem Chem Phys; 2006 Nov 07; 8(41):4752-7. PubMed ID: 17043718 [Abstract] [Full Text] [Related]
39. Thermodynamic exploration of xenon/krypton separation based on a high-throughput screening. Ren E, Coudert FX. Faraday Discuss; 2021 Oct 15; 231(0):201-223. PubMed ID: 34195736 [Abstract] [Full Text] [Related]
40. Molecular hydrogen and catalytic combustion in the production of hyperpolarized 83Kr and 129Xe MRI contrast agents. Rogers NJ, Hill-Casey F, Stupic KF, Six JS, Lesbats C, Rigby SP, Fraissard J, Pavlovskaya GE, Meersmann T. Proc Natl Acad Sci U S A; 2016 Mar 22; 113(12):3164-8. PubMed ID: 26961001 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]