These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


309 related items for PubMed ID: 25278469

  • 1. Musculoskeletal modelling deconstructs the paradoxical effects of elastic ankle exoskeletons on plantar-flexor mechanics and energetics during hopping.
    Farris DJ, Hicks JL, Delp SL, Sawicki GS.
    J Exp Biol; 2014 Nov 15; 217(Pt 22):4018-28. PubMed ID: 25278469
    [Abstract] [Full Text] [Related]

  • 2. Linking the mechanics and energetics of hopping with elastic ankle exoskeletons.
    Farris DJ, Sawicki GS.
    J Appl Physiol (1985); 2012 Dec 15; 113(12):1862-72. PubMed ID: 23065760
    [Abstract] [Full Text] [Related]

  • 3. Mechanics and energetics of incline walking with robotic ankle exoskeletons.
    Sawicki GS, Ferris DP.
    J Exp Biol; 2009 Jan 15; 212(Pt 1):32-41. PubMed ID: 19088208
    [Abstract] [Full Text] [Related]

  • 4. Elastic ankle exoskeletons reduce soleus muscle force but not work in human hopping.
    Farris DJ, Robertson BD, Sawicki GS.
    J Appl Physiol (1985); 2013 Sep 01; 115(5):579-85. PubMed ID: 23788578
    [Abstract] [Full Text] [Related]

  • 5. Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency.
    Sawicki GS, Ferris DP.
    J Exp Biol; 2009 Jan 01; 212(Pt 1):21-31. PubMed ID: 19088207
    [Abstract] [Full Text] [Related]

  • 6. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons.
    Jackson RW, Collins SH.
    J Appl Physiol (1985); 2015 Sep 01; 119(5):541-57. PubMed ID: 26159764
    [Abstract] [Full Text] [Related]

  • 7. Muscle-tendon mechanics explain unexpected effects of exoskeleton assistance on metabolic rate during walking.
    Jackson RW, Dembia CL, Delp SL, Collins SH.
    J Exp Biol; 2017 Jun 01; 220(Pt 11):2082-2095. PubMed ID: 28341663
    [Abstract] [Full Text] [Related]

  • 8. On the biological mechanics and energetics of the hip joint muscle-tendon system assisted by passive hip exoskeleton.
    Chen W, Wu S, Zhou T, Xiong C.
    Bioinspir Biomim; 2018 Dec 04; 14(1):016012. PubMed ID: 30511650
    [Abstract] [Full Text] [Related]

  • 9. Hopping with degressive spring stiffness in a full-leg exoskeleton lowers metabolic cost compared with progressive spring stiffness and hopping without assistance.
    Allen SP, Grabowski AM.
    J Appl Physiol (1985); 2019 Aug 01; 127(2):520-530. PubMed ID: 31219770
    [Abstract] [Full Text] [Related]

  • 10. Elastic ankle exoskeletons influence soleus fascicle dynamics during unexpected perturbations.
    Williamson JL, Lichtwark GA, Dick TJM.
    J Biomech; 2023 Oct 01; 159():111775. PubMed ID: 37672852
    [Abstract] [Full Text] [Related]

  • 11. Impact of elastic ankle exoskeleton stiffness on neuromechanics and energetics of human walking across multiple speeds.
    Nuckols RW, Sawicki GS.
    J Neuroeng Rehabil; 2020 Jun 15; 17(1):75. PubMed ID: 32539840
    [Abstract] [Full Text] [Related]

  • 12. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR, Jacobs DA, Ferris DP, Remy CD.
    J Neuroeng Rehabil; 2015 Nov 04; 12():97. PubMed ID: 26536868
    [Abstract] [Full Text] [Related]

  • 13. Mechanics and energetics of level walking with powered ankle exoskeletons.
    Sawicki GS, Ferris DP.
    J Exp Biol; 2008 May 04; 211(Pt 9):1402-13. PubMed ID: 18424674
    [Abstract] [Full Text] [Related]

  • 14. A Simple Model to Estimate Plantarflexor Muscle-Tendon Mechanics and Energetics During Walking With Elastic Ankle Exoskeletons.
    Sawicki GS, Khan NS.
    IEEE Trans Biomed Eng; 2016 May 04; 63(5):914-923. PubMed ID: 26485350
    [Abstract] [Full Text] [Related]

  • 15. Joint kinetic response during unexpectedly reduced plantar flexor torque provided by a robotic ankle exoskeleton during walking.
    Kao PC, Lewis CL, Ferris DP.
    J Biomech; 2010 May 07; 43(7):1401-7. PubMed ID: 20171638
    [Abstract] [Full Text] [Related]

  • 16. Tendon elastic strain energy in the human ankle plantar-flexors and its role with increased running speed.
    Lai A, Schache AG, Lin YC, Pandy MG.
    J Exp Biol; 2014 Sep 01; 217(Pt 17):3159-68. PubMed ID: 24948642
    [Abstract] [Full Text] [Related]

  • 17. Coupled exoskeleton assistance simplifies control and maintains metabolic benefits: A simulation study.
    Bianco NA, Franks PW, Hicks JL, Delp SL.
    PLoS One; 2022 Sep 01; 17(1):e0261318. PubMed ID: 34986191
    [Abstract] [Full Text] [Related]

  • 18. Predictive Simulation of Human Walking Augmented by a Powered Ankle Exoskeleton.
    Nguyen VQ, Umberger BR, Sup FC.
    IEEE Int Conf Rehabil Robot; 2019 Jun 01; 2019():53-58. PubMed ID: 31374606
    [Abstract] [Full Text] [Related]

  • 19. Ultrasound imaging links soleus muscle neuromechanics and energetics during human walking with elastic ankle exoskeletons.
    Nuckols RW, Dick TJM, Beck ON, Sawicki GS.
    Sci Rep; 2020 Feb 27; 10(1):3604. PubMed ID: 32109239
    [Abstract] [Full Text] [Related]

  • 20. Leg exoskeleton reduces the metabolic cost of human hopping.
    Grabowski AM, Herr HM.
    J Appl Physiol (1985); 2009 Sep 27; 107(3):670-8. PubMed ID: 19423835
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.