These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


140 related items for PubMed ID: 25296391

  • 1. Injectable scaffolds for bone regeneration.
    Yasmeen S, Lo MK, Bajracharya S, Roldo M.
    Langmuir; 2014 Nov 04; 30(43):12977-85. PubMed ID: 25296391
    [Abstract] [Full Text] [Related]

  • 2. Carbon nanotubes play an important role in the spatial arrangement of calcium deposits in hydrogels for bone regeneration.
    Cancian G, Tozzi G, Hussain AA, De Mori A, Roldo M.
    J Mater Sci Mater Med; 2016 Aug 04; 27(8):126. PubMed ID: 27324780
    [Abstract] [Full Text] [Related]

  • 3. Injectable chitosan/gelatin/bioactive glass nanocomposite hydrogels for potential bone regeneration: In vitro and in vivo analyses.
    Moreira CDF, Carvalho SM, Florentino RM, França A, Okano BS, Rezende CMF, Mansur HS, Pereira MM.
    Int J Biol Macromol; 2019 Jul 01; 132():811-821. PubMed ID: 30946907
    [Abstract] [Full Text] [Related]

  • 4. Biomimetic three-dimensional nanocrystalline hydroxyapatite and magnetically synthesized single-walled carbon nanotube chitosan nanocomposite for bone regeneration.
    Im O, Li J, Wang M, Zhang LG, Keidar M.
    Int J Nanomedicine; 2012 Jul 01; 7():2087-99. PubMed ID: 22619545
    [Abstract] [Full Text] [Related]

  • 5. Biomedical potential of chitosan/HA and chitosan/β-1,3-glucan/HA biomaterials as scaffolds for bone regeneration--A comparative study.
    Przekora A, Palka K, Ginalska G.
    Mater Sci Eng C Mater Biol Appl; 2016 Jan 01; 58():891-9. PubMed ID: 26478384
    [Abstract] [Full Text] [Related]

  • 6. Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo.
    Dhivya S, Saravanan S, Sastry TP, Selvamurugan N.
    J Nanobiotechnology; 2015 Jun 12; 13():40. PubMed ID: 26065678
    [Abstract] [Full Text] [Related]

  • 7. Nano-hydroxyapatite/chitosan-starch nanocomposite as a novel bone construct: Synthesis and in vitro studies.
    Shakir M, Jolly R, Khan MS, Iram Ne, Khan HM.
    Int J Biol Macromol; 2015 Sep 12; 80():282-92. PubMed ID: 26116779
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength.
    Maji K, Dasgupta S, Kundu B, Bissoyi A.
    J Biomater Sci Polym Ed; 2015 Sep 12; 26(16):1190-209. PubMed ID: 26335156
    [Abstract] [Full Text] [Related]

  • 10. Bone reconstruction in rat calvarial defects by chitosan/hydroxyapatite nanoparticles scaffold loaded with unrestricted somatic stem cells.
    Biazar E, Heidari Keshel S, Tavirani MR, Jahandideh R.
    Artif Cells Nanomed Biotechnol; 2015 Apr 12; 43(2):112-6. PubMed ID: 24456006
    [Abstract] [Full Text] [Related]

  • 11. A thermosensitive chitosan/poly(vinyl alcohol) hydrogel containing hydroxyapatite for protein delivery.
    Tang Y, Du Y, Li Y, Wang X, Hu X.
    J Biomed Mater Res A; 2009 Dec 15; 91(4):953-63. PubMed ID: 19097146
    [Abstract] [Full Text] [Related]

  • 12. Injectable and thermosensitive nanofibrous hydrogel for bone tissue engineering.
    Wasupalli GK, Verma D.
    Mater Sci Eng C Mater Biol Appl; 2020 Feb 15; 107():110343. PubMed ID: 31761212
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Injectable nanoparticles/hydrogels composite as sustained release system with stromal cell-derived factor-1α for calvarial bone regeneration.
    Mi L, Liu H, Gao Y, Miao H, Ruan J.
    Int J Biol Macromol; 2017 Aug 15; 101():341-347. PubMed ID: 28330754
    [Abstract] [Full Text] [Related]

  • 15. A novel one-pot process for near-net-shape fabrication of open-porous resorbable hydroxyapatite/protein composites and in vivo assessment.
    Mueller B, Koch D, Lutz R, Schlegel KA, Treccani L, Rezwan K.
    Mater Sci Eng C Mater Biol Appl; 2014 Sep 15; 42():137-45. PubMed ID: 25063103
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Injectable nanohydroxyapatite-chitosan-gelatin micro-scaffolds induce regeneration of knee subchondral bone lesions.
    Wang B, Liu W, Xing D, Li R, Lv C, Li Y, Yan X, Ke Y, Xu Y, Du Y, Lin J.
    Sci Rep; 2017 Dec 01; 7(1):16709. PubMed ID: 29196647
    [Abstract] [Full Text] [Related]

  • 18. Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering.
    Kim HL, Jung GY, Yoon JH, Han JS, Park YJ, Kim DG, Zhang M, Kim DJ.
    Mater Sci Eng C Mater Biol Appl; 2015 Sep 01; 54():20-5. PubMed ID: 26046263
    [Abstract] [Full Text] [Related]

  • 19. Characterization and in vivo evaluation of chitosan-hydroxyapatite bone scaffolds made by one step coprecipitation method.
    Danilchenko SN, Kalinkevich OV, Pogorelov MV, Kalinkevich AN, Sklyar AM, Kalinichenko TG, Ilyashenko VY, Starikov VV, Bumeyster VI, Sikora VZ, Sukhodub LF.
    J Biomed Mater Res A; 2011 Mar 15; 96(4):639-47. PubMed ID: 21268238
    [Abstract] [Full Text] [Related]

  • 20. Injectable and thermosensitive PLGA-g-PEG hydrogels containing hydroxyapatite: preparation, characterization and in vitro release behavior.
    Lin G, Cosimbescu L, Karin NJ, Tarasevich BJ.
    Biomed Mater; 2012 Apr 15; 7(2):024107. PubMed ID: 22456931
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.